Carbon dioxide is gaining popularity
Supercritical carbon dioxide is used to remove organichloride pesticides and metals from agricultural crops without adulterating the desired constituents from the plant matter in the herbal supplement industry (Department of Pharmaceutical Analysis, Shenyang Pharmaceutical University, Shenyang 110016, China).
Supercritical carbon dioxide can also be used as a more environmentally friendly solvent for dry cleaning as compared to more traditional solvents such as hydrocarbons and perchloroethylene.[2]
Supercritical carbon dioxide is used as the extraction solvent for creation of essential oils and other herbal distillates. Its main advantages over solvents such as hexane and acetone in this process are that it is non-toxic and non-flammable. Furthermore, separation of the reaction components from the starting material is much simpler than with traditional organic solvents, merely by allowing it to evaporate into the air or recycling it by condensation into a cold recovery vessel. Its advantage over steam distillation is that it is used at a lower temperature, which can separate the plant waxes from the oils.[3]
In laboratories, supercritical carbon dioxide is used as an extraction solvent, e.g., in determination of total recoverable hydrocarbons from soils, sediments, fly-ash, and other media,[4] and determination of polycyclic aromatic hydrocarbons in soil and solid wastes.[5] Supercritical fluid extraction has also been used in determination of hydrocarbon components in water.[6]
Processes which use supercritical carbon dioxide to produce micro and nano scale particles, often for pharmaceutical uses, are currently being developed. The gas antisolvent process, rapid expansion of supercritical solutions, and supercritical antisolvent precipitation (as well as several related methods) have been shown to process a variety of substances into particles.
Carbon dioxide is gaining popularity
Supercritical carbon dioxide is used to remove organichloride pesticides and metals from agricultural crops without adulterating the desired constituents from the plant matter in the herbal supplement industry (Department of Pharmaceutical Analysis, Shenyang Pharmaceutical University, Shenyang 110016, China).
Supercritical carbon dioxide can also be used as a more environmentally friendly solvent for dry cleaning as compared to more traditional solvents such as hydrocarbons and perchloroethylene.[2]
Supercritical carbon dioxide is used as the extraction solvent for creation of essential oils and other herbal distillates. Its main advantages over solvents such as hexane and acetone in this process are that it is non-toxic and non-flammable. Furthermore, separation of the reaction components from the starting material is much simpler than with traditional organic solvents, merely by allowing it to evaporate into the air or recycling it by condensation into a cold recovery vessel. Its advantage over steam distillation is that it is used at a lower temperature, which can separate the plant waxes from the oils.[3]
In laboratories, supercritical carbon dioxide is used as an extraction solvent, e.g., in determination of total recoverable hydrocarbons from soils, sediments, fly-ash, and other media,[4] and determination of polycyclic aromatic hydrocarbons in soil and solid wastes.[5] Supercritical fluid extraction has also been used in determination of hydrocarbon components in water.[6]
Processes which use supercritical carbon dioxide to produce micro and nano scale particles, often for pharmaceutical uses, are currently being developed. The gas antisolvent process, rapid expansion of supercritical solutions, and supercritical antisolvent precipitation (as well as several related methods) have been shown to process a variety of substances into particles.
การแปล กรุณารอสักครู่..