The hybrid PS–GO structures were created by the method of electrochemical etching of silicon wafer and deposition on the PS layer of GO prepared from water dispersion. It was found that GO formed a film on the surface of PS and partially penetrated into the pores. The effect of the GO layer on the luminescent and electrical properties of PS was studied using comprehensive studies. It was found that the GO film passivates the surface of PS and also is sufficiently transparent to allow excitation and emission of PL. In addition, GO modified the PL spectrum, shifting the emission maximum for Δλ = 25 nm to lower energies. Deposition of the GO on the surface of the porous layer led to the changes of the electrical parameters of PS in AC and DC modes. Change of the character of CVC from rectifier-like to varistor-like can be caused by the appearance of new electric barriers in the hybrid nanosystems. The complex nature of the dispersion of electrical capacitance in PS-based structures was established using the method of impedance spectroscopy. Observed behavior of the dispersion is caused by the features of transport and relaxation of charges in disordered systems. Impact of the GO on electrical characteristics of PS manifests in reduction of the capacitance and internal resistance of the hybrid structures.