Supply Chain Forecasting (SCF) goes beyond the operational task of extrapolating demand requirements at one echelon. It involves complex issues such as supply chain coordination and sharing of information between multiple stakeholders. Academic research in SCF has tended to neglect some issues that are important in practice. In areas of practical relevance, sound theoretical developments have rarely been translated into operational solutions or integrated in state-of-the-art decision support systems. Furthermore, many experience-driven heuristics are increasingly used in everyday business practices. These heuristics are not supported by substantive scientific evidence; however, they are sometimes very hard to outperform. This can be attributed to the robustness of these simple and practical solutions such as aggregation approaches for example (across time, customers and products).