Wind
The potential of wind in the US mainly lies in the centre
of the country (the Midwest) stretching from Canada
to Texas (see Annex E for resource map). In this region,
wind speeds routinely average 8.5 meter per second
at 80 meter height. This leads to capacity factors for
onshore wind of as high as 40% or even more
ity to deliver electricity to consumers from these high
resource areas which are often far from consumption
centres can prove a challenge given existing grid infrastructure.
For this reason, in the analysis wind deployment
has been broken down into two wind resource
categories, one with high resource (70% of capacity additions)
and another with moderate wind resource (30%
of capacity additions) representative of regions closer
to the eastern US load centres. Capacity factor for the
high wind regions is assumed to be 42% by 2030, and
30% for the low-speed wind regions. A total of 290 GWe
of additional wind capacity is assumed over the REmap
period (on top of the 63 GWe in the Reference Case in
2030). Onshore wind will increase to 314 GWe in REmap.
For offshore wind, an additional 40 GWe is assumed over
the period on top of the 2 GWe in the reference case. Total
offshore and onshore will total 356 GWe. This growth
is based on NREL results assuming 290 GWe (of which
11 GWe is wind offshore) by 2030 and also includes additional
wind capacity of around 65 GWe (30 GWe of which
is offshore wind) due to increases in electrification in the
end-use sectors identified in the REmap analysis. The
result is total wind capacity of around 356 GWe (42 GWe
offshore). In order to meet the increases that were analyzed
by NREL, around 13 GWe/year of newly installed
capacity need to be installed, to meet the increased
electrification needs identified in REmap in the end-use
sectors, and additional 3 GWe/year would be required, in
total around 16 GWe/year of additional onshore/offshore
wind would need to be installed. This is higher than the
US Wind Vision scenario which suggests that 10% of
the US electricity demand would be supplied by wind
by 2020, 20% by 2035 and 35% by 2050. This requires
a growth in installed capacity of around 10 GW/year
in the near term realising a total installed capacity of
210-230 GWe by 2030 (US DoE, 2014a).