A principal cause of the relatively low power density of modern wind farms is the deleterious effect of vortex shedding from the individual wind turbines, which degrades the quality of airflow past turbines further downwind in an array. This project utilizes computational fluid dynamics simulations to accurately model the wake dynamics of vertical axis wind turbines with realistic input wind parameters based on field measurements. The discovery of VAWT operating parameters and array configurations that reduce vortex shedding in the wake enables the turbines to be placed in closer proximity, thereby increasing the net power output per unit area of the VAWT arrays and potentially increasing the individual turbine efficiency.