Mean Sea Level (MSL) has a least two different meanings:
1. For a tide gauge operator, MSL means the 'still water level'. The 'still water level' (without waves) is averaged over some period of time, such as a month or a year. This MSL is measured relative to fixed marks on the land known as 'benchmarks'.
Because mean sea level is measured relative to land, MSL can change either due to a change in the volume of THE WATER or due to a movement of the land. For this reason measurements from a tide gauge are sometimes called 'relative sea level'.
The process of calculating MSL from tide gauge data is described in the Intergovernmental Oceanographic Commission manuals which are available from the training manuals section of this website. All MSL data in the PSMSL are processed in this way.
2. The second meaning of MSL is used by geodesists – scientists who measure the shape of the Earth. For a geodesist, MSL is the local height of the global Mean Sea Surface (MSS) above a level surface, known as the 'geoid'.
A level surface is one on which a ball would not roll when placed on it. However, level surfaces are not necessarily flat. The Earth is nearly round and so a good approximation is that the level surface of the Earth is a sphere.
However, the Earth is not in fact perfectly round but is slightly flattened at the poles. This is due to the rotation (spin) of the Earth that produces a slight bulge at the equator. We call this shape an 'oblate spheroid' or an 'ellipsoid'. This ellipse has a smallest radius of 6356.752 km at the poles and a largest radius of 6378.137 km at the equator.
Even this ellipsoid is not completely level. Concentrations of mass in the Earth's interior, as well as topography on the Earth's surface, such as mountains and seamounts, have a gravitational attraction which distorts this level surface (the geoid) compared to the ellipsoid. The difference between the Mean Sea Surface and the ellipsoid closest to it can be 100m in either direction, depending on location.
As a result, the MSS observed from space, with the reference ellipsoid subtracted from it, is very complicated. Over shorter distances there are undulations in the sea floor which are visible due to the gravitational attraction of seamounts and underwater mountains.
If the oceans did not move the MSS and the geoid would have the same shape. However, winds, and the heating and cooling of the atmosphere, drive currents. These currents lead to differences between the MSS and the geoid of 1-2 m, even after averaging out time dependent motions such as tides. The differences in the MSS generated by the currents means that the Atlantic is 1m lower on the north side of the Gulf Stream than further south.
Mean Sea Level (MSL) has a least two different meanings:
1. For a tide gauge operator, MSL means the 'still water level'. The 'still water level' (without waves) is averaged over some period of time, such as a month or a year. This MSL is measured relative to fixed marks on the land known as 'benchmarks'.
Because mean sea level is measured relative to land, MSL can change either due to a change in the volume of THE WATER or due to a movement of the land. For this reason measurements from a tide gauge are sometimes called 'relative sea level'.
The process of calculating MSL from tide gauge data is described in the Intergovernmental Oceanographic Commission manuals which are available from the training manuals section of this website. All MSL data in the PSMSL are processed in this way.
2. The second meaning of MSL is used by geodesists – scientists who measure the shape of the Earth. For a geodesist, MSL is the local height of the global Mean Sea Surface (MSS) above a level surface, known as the 'geoid'.
A level surface is one on which a ball would not roll when placed on it. However, level surfaces are not necessarily flat. The Earth is nearly round and so a good approximation is that the level surface of the Earth is a sphere.
However, the Earth is not in fact perfectly round but is slightly flattened at the poles. This is due to the rotation (spin) of the Earth that produces a slight bulge at the equator. We call this shape an 'oblate spheroid' or an 'ellipsoid'. This ellipse has a smallest radius of 6356.752 km at the poles and a largest radius of 6378.137 km at the equator.
Even this ellipsoid is not completely level. Concentrations of mass in the Earth's interior, as well as topography on the Earth's surface, such as mountains and seamounts, have a gravitational attraction which distorts this level surface (the geoid) compared to the ellipsoid. The difference between the Mean Sea Surface and the ellipsoid closest to it can be 100m in either direction, depending on location.
As a result, the MSS observed from space, with the reference ellipsoid subtracted from it, is very complicated. Over shorter distances there are undulations in the sea floor which are visible due to the gravitational attraction of seamounts and underwater mountains.
If the oceans did not move the MSS and the geoid would have the same shape. However, winds, and the heating and cooling of the atmosphere, drive currents. These currents lead to differences between the MSS and the geoid of 1-2 m, even after averaging out time dependent motions such as tides. The differences in the MSS generated by the currents means that the Atlantic is 1m lower on the north side of the Gulf Stream than further south.
การแปล กรุณารอสักครู่..
