Cells were constructed for HCl electrolysis using a Nafion 120 membrane. The anode was a graphite-Teflon particulate mass activated with temperature stabilized, reduced oxides of a platinum group metal, specifically a ruthenium (47.5% by weight)--iridium (5% by weight)--titanium (47.5% by weight) oxide ternary alloy. The anode loading was 1 mg/cm2 of Ru--Ir--Ta and 4 mg/cm2 of graphite. The anode electrode was placed in direct contact with a graphite anode endplate current collector having a plurality of raised portions or ribs in contact with the anode electrode. The cathode was a particulate mass of Teflon bonded platinum black electrocatalyst particles. An electrode structure of conductive graphite mixed with a hydrophobic binder such as Teflon was positioned on the surface on the Teflon bonded platinum black cathode. A conductive graphite Teflon sheet was positioned directly between the electrode and a ribbed graphite cathode endplate current collector. HCl feedstock maintained at approximately 30° C. (i.e., room temperature) was introduced into the anolyte chamber at a rate of 2400 cc/min/ft2 (i.e., ˜1.6 stoichiometric). The following data was obtained: