According to Fig. 5, the level of microbial population increased to 8.82 log cfu/mL after 56 days of storage in LDPE pure packages which is higher that of in LDPE + 5% P105 (8.23 log cfu/mL), LDPE + 1.5% P105 (8.48 log cfu/mL), LDPE + 0.25% nano-ZnO (8.56 log cfu/mL), and LDPE + 1% nano-ZnO (8.73 log cfu/mL).
No significant differences were observed in L. plantarum populations between LDPE + 1.5% P105 and LDPE + 0.25% nano-ZnO packages, after 56 days of storage.
Microbial population increased with increasing storage time to 56 days and then decreased up to 112 days of storage in all the test packages.
However, microbial growth in LDPE + 5% P105, LDPE + 1.5% P105, LDPE + 0.25% nano-ZnO, and LDPE + 1% nano-ZnO compared with pure LDPE packages, showed a higher reduction up to 112 days storage at 4 °C, respectively.
Packages containing nanosilver had lower (P < 0.05) bacterial populations compared packages containing nano-ZnO ( Fig. 5). The LDPE + 5% P105 packages had a significantly less loading level for 112 days of storage than other packages. Silver nanoparticles can damage cell membranes of microorganisms by forming “pits” on their surfaces.
Moreover, they may penetrate into the cells to cause DNA damage ( Sondi and Salopek-Sondi, 2004 and Morones et al., 2005).
Silver ions released from the surface of these nanoparticles can interact with thiol groups in protein to induce bacterial inactivation, condensation of DNA molecules, and loss of their replication ability (Feng et al., 2000).
Based on electron spin resonance (ESR) measurements, Kim et al. (2007)observed that the antimicrobial mechanism of Ag nanoparticles is related to the formation of free radicals and the subsequent free radical-induced membrane damage.
However, Ag/TiO2 shows great promise as a photocatalytic material due to its photoreactivity and visible light response (Li et al., 2008). Zhang and Chen (2009) showed that doping TiO2with a metallic form of nanosilver, enhanced its bactericidal activity due to the unique structural feature of nanosilver dispersed on TiO2 surface.
This indicated that TiO2 serves as a solid antiaggregation support to maintain the dispersion of nanosilver, which could also contribute to its antibacterial performance. Kubacka et al. (2009) maintained that ethylene-vinyl alcohol copolymer (EVOH) nanocomposite containing mixed Ag-TiO2 has a good antimicrobial activity against yeast and moulds and bacteria through a plasmonic effect.
This interaction not only optimizes UVvisible photon handling by the film but also makes the whole surface of the nanomaterial biocidal while also eliminating the necessity for the contact between the primary biocidal inorganic agent and the microorganism. An, Zhang, Wang, and Tang (2008) found silver optimal concentration 0.06 mg L−1 for preservation of asparagus by silver nanoparticles-polyvinylpyrrolidone (PVP) coating.Damm, Münstedt, and Rösch (2008) reported that polyamide 6 filled with 2% (w/w) nanosilver was effective against E. coli even after being immersed in water for 100 days.Fernández et al. (2009) reported that absorbent pads containing nanosilver were the common component in packaging to preserve poultry meat until consumption and that they could yield a log reduction of up to 40% in aerobic mesophilic bacteria.
ตามรูป 5 ระดับของประชากรจุลินทรีย์เพิ่มขึ้นเพื่อล็อก 8.82 cfu/mL หลังจาก 56 วันของการจัดเก็บในแพคเกจบริสุทธิ์ LDPE ซึ่งสูงของ LDPE + 5% P105 (8.23 ล็อก cfu/mL), LDPE + 1.5% P105 (8.48 ล็อก cfu/mL), LDPE + 0.25% นาโน-ZnO (ล็อก 8.56 cfu/มิลลิลิตร), และ LDPE + 1% นาโน-ZnO (8.73 ล็อก cfu/mL) ไม่มีความแตกต่างกันถูกตั้งข้อสังเกตในประชากรบาซิลลัส L. ระหว่าง LDPE + 1.5% P105 และ LDPE + 0.25% แพ คเกจ nano ZnO หลังจากวันที่ 56 ของเก็บ ประชากรจุลินทรีย์เพิ่ม ด้วยเวลาเก็บเพิ่มเป็น 56 วัน และจากนั้น ลดลงถึง 112 วันของการจัดเก็บในแพคเกจการทดสอบ อย่างไรก็ตาม จุลินทรีย์เจริญเติบโตใน LDPE + 5% P105, LDPE + 1.5% P105, LDPE + 0.25% นาโน-ZnO และ LDPE + 1% เมื่อเทียบกับแพคเกจ LDPE บริสุทธิ์ ZnO nano พบลดสูงขึ้นถึง 112 วันเก็บที่ 4 ° C ตามลำดับ มีแพคเกจที่ประกอบด้วย nanosilver ต่ำ (P < 0.05) ประชากรแบคทีเรียเปรียบเทียบแพคเกจที่ประกอบด้วย nano ZnO (5 รูป) LDPE + 5% P105 แพ็คเกจมีการโหลดมากน้อยระดับ 112 วันเก็บข้อมูลกว่าแพคเกจอื่น ๆ เก็บกักเงินสามารถทำลายเยื่อหุ้มเซลล์ของจุลินทรีย์ โดย "หลุม" บนพื้นผิวของพวกเขา นอกจากนี้ พวกเขาอาจเจาะเข้าไปในเซลล์ทำให้เกิดความเสียหายของดีเอ็นเอ (Sondi และ Salopek-Sondi, 2004 และ Morones et al. 2005) ซิลเวอร์ไอออนช่วยออกจากพื้นผิวเก็บกักเหล่านี้สามารถโต้ตอบกับกลุ่ม thiol ในโปรตีนจะทำให้เกิดแบคทีเรียเลิก การรวมตัวของโมเลกุลดีเอ็นเอ และการสูญเสียความสามารถในการจำลองแบบ (Feng et al. 2000) ตามอิเล็กตรอนสปินเรโซแนนซ์ (ESR) วัด Kim et al. (2007) พบว่า กลไกการต้านเก็บกัก Ag จะเกี่ยวข้องกับการก่อตัวของอนุมูลอิสระและความเสียหายของเยื่อหุ้มเซลล์อนุมูลอิสระที่เกิดขึ้นตามมา อย่างไรก็ตาม Ag/TiO2 แสดงสัญญาที่ดีเป็นวัสดุกระเนื่องจาก photoreactivity และมองเห็นการตอบสนองแสง (Li et al. 2008) จางและเฉิน (2009) แสดงให้เห็นว่า ยาสลบ TiO2with แบบโลหะของ nanosilver เพิ่มกิจกรรมของจากแบคทีเรียเนื่องจากลักษณะโครงสร้างเฉพาะของ nanosilver กระจายบนพื้นผิวของ TiO2 นี่แสดงว่า TiO2 เป็น antiaggregation รองรักษาการกระจายตัวของ nanosilver ซึ่งยังสามารถนำไปสู่ประสิทธิภาพของแบคทีเรีย Kubacka et al. (2009) รักษาที่เอทิลีนไวนิลแอลกอฮอล์ลิเมอร์ (EVOH) สิตที่ประกอบด้วยผสม Ag-TiO2 มีกิจกรรมต้านจุลชีพที่ดีกับยีสต์ และแม่พิมพ์ และแบคทีเรียผ่านเอ plasmonic การโต้ตอบนี้ไม่เพียงแต่เพิ่มประสิทธิภาพ UVvisible โฟตอนโดยภาพยนตร์เรื่องนี้ แต่ยัง ทำให้พื้นผิวทั้งหมดของ nanomaterial biocidal ในขณะที่ยัง ตัดความจำเป็นสำหรับการติดต่อระหว่างตัวแทนนินทรีย์ biocidal หลักและจุลินทรีย์ จาง วัง และถัง (2008) พบเงินที่เหมาะสมความเข้มข้น 0.06 มิลลิกรัม L−1 สำหรับเก็บรักษาของหน่อไม้ฝรั่งโดยการเก็บกักเงิน-polyvinylpyrrolidone (PVP) เคลือบ Damm, Münstedt และ Rösch (2008) รายงานที่โพลีอะมายด์ 6 มี nanosilver 2% (w/w) ไม่มีผลกับ E. coli แม้หลังจากที่ถูกแช่อยู่ในน้ำ 100 วัน Fernández et al. (2009) รายงานว่า แผ่นดูดซับที่ประกอบด้วย nanosilver มีส่วนประกอบทั่วไปในบรรจุภัณฑ์เพื่อรักษาเนื้อสัตว์ปีกจนถึงการใช้และการที่พวกเขาสามารถให้บันทึกลดถึง 40% ในแบคทีเรียแอโรบิก mesophilic
การแปล กรุณารอสักครู่..
