Uniform magnetic fields
A 'hand-waving' explanation might help clarify the physics. Take an initially uniform magnetic field in free space and introduce into it an iron sphere. The flux lines will bend in the vicinity of the iron so that they will converge upon it. Inside the iron the lines will be quite concentrated (though parallel to the original field).
Now, the point is that there will be no net force on the iron, no matter how strong the field. A sphere has perfect symmetry, so rotation will not change the picture in any way. If there is translational movement then all that can happen if the sphere were to move is that the distortion of the field around the original position of the sphere will disappear and the same distortion will be re-established around the new position; the total system energy will remain unchanged.
OK, instead of the sphere let's try an iron rod. This is different because we've lost symmetry. What happens is that the axis of the rod will be drawn into alignment with the field - like a compass needle. The flux lines prefer the iron to the air because of the higher permeability. Equation EFB has μ on the denominator so the field energy is lower here than in the air, and the further the flux can go through the iron the lower the energy. Think of current flow through a resistor; the current has an easier time going through a low resistance than a high resistance. Flux goes easier through high permeability than through low. When the rod is aligned with the field the flux can go further through a high permeability region. Note that we still don't have a translational force (provided that the field is uniform on the scale of the rod). Think about the famous experiment with iron filings sprinkled onto a piece of cardboard above a bar magnet. The filings tend to line up with the field but don't generally move much because they are so small that the field appears uniform to them.
So for there to be a force on a piece of iron then a displacement of the iron must result in an alteration to the field energy. The electromagnet you are using will have an opinion about changes to the field it generates. It will say that its inductance is changing. This is the basis of one solution to the problem: