Now, substituting Eqs. (4.61) and (4.62) into Eq. (4.53) and using the same procedure as described above for the first-order correction of electron wave functions, one obtains the second-order correction of energy, which is
( 220nmnmnomomnHEEE∞=≠′=−Σ (4.63)
Using Eq. (4.63), the expression for the electron energy corrected to the second order is given by
()20nmnnomnomomnHEEEE∞=≠′=+−Σ (4.64)
Equations (4.59) and (4.64) are the new wave functions and energies of electrons derived from the quantum mechanical stationary perturbation theory. The results may be used in the NFE approximation to find the wave functions and energies of the outer-shell electrons of a crystalline solid. As mentioned earlier, the valence electrons in a semiconductor are loosely bound to the atoms, and hence the periodic crystal potential seen by these valence electrons can be treated as a small perturbing Hamiltonian. The unperturbed one-electron Schrödinger equation is depicted by
222()()ooookkkmrEr−∇=φφh (4.65)
Which has the solutions of free electron wave functions and energies given respectively by
1()okikrrNVeφ⋅= (4.66)
222okokEm=h (4.67)
Where N is the total number of unit cells in the crystal, V is the volume of the unit cell, okφ(r) is the free electron wave functions, and is the free electron energy. The pre-exponential factor given by Eq. (4.66) is the normalization constant. The one-electron Schrödinger equation in the presence of a periodic crystal potential V(r) is given by okE
()22*()()()2kkkrVrrErm⎛⎞−∇+=⎜⎟⎜⎟⎝⎠φφh (4.68)
Where m* is the effective mass of electrons in the crystal. The crystal potential V(r) can be expressed in terms of the Fourier expansion in the reciprocal space, which is given by
()()jjKijKrKVrve−⋅=Σ (4.69)
Where Kj is the reciprocal lattice vector and v(Kj) is the Fourier coefficient of the periodic potential V(r).
The new electron wave functions and energies can be obtained by finding the matrix element Hk′k due to the periodic crystal potential V(r) using the stationary perturbation method described above. Now substituting Eq. (4.69) into Eq.(4.60), the matrix element due to the periodic potential V(r) is given by
3*''()|()|()kkkkHrVrrdr=∫φφ
()31()jjjKiKrikrikrvKdrNVeee−⋅′−⋅⋅⎛⎞=⎜⎟⎝⎠Σ∫ (4.70)
Note that the integral on the right-hand side of Eq. (4.70) will vanish unless k – k′ = Kj, where Kj, is the reciprocal lattice vector. Thus, by substituting k – k′ = Kj in Eq.(4.70) and carrying out the integration one obtains
()kkjHKv′= (4.71)
Now, substituting Eq. (4.71) into (4.59) yields the new electron wave functions, which is
()()1()1jjiKjkooKkkrikrvKereNVEE−⋅′⋅=+−⎡⎤⎢⎥⎢⎥⎣⎦Σφ (4.72)
It is interesting to note that the term inside the square bracket on the right-hand side of Eq. (4.72) has the periodicity of the crystal potential V(r), and may be designated as the Bloch function uk(r). Thus, the new electron wave functions given by Eq. (4.72) are indeed satisfied the Bloch type wave functions defined by Eq. (4.17).
The expression of electron energy can be derived in a similar manner by substituting Eq. (4.71) into Eq (4.64), and the result yields
()()2jjokkooKkkvKEEEE′=+−Σ (4.73)
It is seen that the expressions for the electron wave functions and energies given by Eqs. (4.72) and (4.73) become infinity if , and hence the perturbation approximation is no longer valid. This condition occurs at the zone boundaries, and the electron energy corresponding to this condition is given by okEE′=
()22222jokkKkEmm ′−===hh (4.74)
Solving Eq.(4.74) yields
22jjKkK⋅= (4.75)
Here the relation k′ = k – Kj is used in Eq. (4.74). Equation (4.75) represents exactly the Bragg diffraction condition in a crystalline solid, which occurs at the zone boundaries. Failure of the perturbation theory at the zone boundaries is due to the fact that the periodic crystal potential V(r) at zone boundaries is no longer small, and hence cannot be treated as a small perturbing potential. In fact, the Bragg diffraction condition results in a very severe perturbation of electron wave functions at the zone boundaries. Therefore, to find a proper solution for the electron energy and wave functions at the zone boundaries, it is necessary to reconstruct a new perturbed wave function, which is a linear combination of an incident- and a reflected- plane wave. Using a linear combination of the incident- and reflected- plane waves, one can construct a new electron wave function at the zone boundary, which is given by
o1()koikrikrrAeAeφ⋅′⋅=+ (4.76)
Where k′ = k – Kj. Substituting Eq. (4.76) into Eq. (4.65) yields
()()22221220ikrikrkokkkVrEAeVrEAemm′⋅⎧⎫⎧⎫′⎪⎪⎪⎪+−++−=⎡⎤⎡⎤⎨⎬⎨⎬⎣⎦⎣⎦⎪⎪⎪⎪⎩⎭⎩⎭hh (4.77)
Now, multiplying Eq. (4.77) by and integrating the equation over the entire space, one obtains ikre−⋅
()()*10ookkjAEEAvK−− (4.78)
Where22=2okokEmh, and v*(Kj), the conjugate of the Fourier coefficient, is given by
(4.79) ()()*0ikrikrjvKeVredr∞−⋅⋅=∫
Similarly, multiplying Eq. (4.77) by e–ik′· r and integrating over the entire space, one obtains
()()10oojkkAvKAEE′−−= (4.80)
Where 22'=2okokEm′h, and
(4.81) ()()30ikrikjrvKeVredr∞′−⋅⋅=∫
is the Fourier coefficient of the periodic crystal potential V(r). A nontrivial solution exists in Eqs. (4.78) and (4.80) only if the determinant of the coefficients of Ao and A1 is set equal to zero, namely,
()()()()*0okkjojkkKKEEvvEE′−−=−− (4.82)
Now, solving Eq. (4.82) for Ek, and the result yields
()()()()122*142ooookkkkkjjKEEEEEvKv′′⎧⎫⎪ ⎡⎤=+±−+⋅⎨ ⎢⎥⎣⎦⎪⎪⎩⎭ (4.83)
Equation (4.83) shows that a forbidden gap exists at the zone boundaries, and the width of the forbidden gap is determined by the value of 4v*(Kj).v(Kj) inside the square bracket of Eq.(4.83), which is determined by the Fourier coefficient of the periodic crystal potential. In general, the energy band gap will increase with increasing value of the Fourier coefficient ()jvK. Figure 4.7 shows the schematic energy band diagram in the reduced zone scheme derived from the NFE approximation. It is interesting to note that the energy band scheme derived from NFE approximation is similar to that obtained from the Kronig–Penney model for the 1-D periodic lattice. Furthermore, the electron wave functions derived from the NFE approximation are indeed satisfied the Bloch condition. The results show that, except at the zone boundaries where an energy discontinuity (or a band gap) occurs, the energy band scheme derived from the NFE approximation resembles that of the free-electron case (with v(Kj) = 0) discussed earlier.
The NFE approximation presented in this section provides a qualitative description of the electronic states for the outer-shell valence electrons of a 3-D crystal lattice. However, in order to obtain true energy band structures for a real crystal, a more rigorous and sophisticated method, such as the pseudopotential or the orthogonalized plane wave method, must be employed in the energy band calculations. Both methods have been widely used in the energy band calculations of semiconductors.
4.6. THE TIGHT-BINDING APPROXIMATION
In this section energy band calculation using the tight-binding approximation or the linear-combination-of-atomic-orbits (LCAO) method is depicted. The LCAO method, which was first proposed by Bloch, is often used to
calculate the electronic states of core electrons in a crystalline solid. It is generally known that core electrons are tightly bound to the individual atoms, which interact with one another within the crystal lattice. In this case, the construction of electron wave functions is achieved using the LCAO method, and the energy bands of electrons are calculated for the corresponding periodic crystal potential. The atomic orbitals are centered on one of the constituent atoms of the crystal. The resulting wave functions are then substituted into the Schrödinger equation, and the energy values are calculated by a procedure similar to that of the NFE approximation described in Section 4.5. In order to apply the LCAO method to core electrons in a crystalline solid, the solution for the free atomic orbital wave functions must be obtained first. This is discussed next.
If φn(r - Rj) represents the atomic orbital wave functions centered at the lattice site Rj, then the wave functions of the crystal orbits φk(r) corresponding to the wave vector krmay be represented by a Bloch sum, which is
()()()kjnjrCkrRφφ= Σ (4.84)
The summation in Eq. (4.84) extends over all the constituent atoms of the crystal. The coefficient Cj(K), which satisfies the Bloch condition, can be written as
()jikRjCke⋅= (4.85)
Now substituting Eq. (4.85) into Eq. (4.84) one obtains
()()()(),jikrRikrikrknjjreerReUφφ−⋅−⋅=−=Σ (4.86)
To satisfy the Bloch condition, the summation given by Eq. (4.86) must have the periodicity of the crystal lattice.
The LCAO method is clearly an approximation to the true crystal orbitals. This method is adequate when the interatomic spacing is large enough such that overlapping among the atomic orbital wave functions φn(r - Rj) is negligible. Thus, the LCAO method is most suitable for the tightly bound core electrons, and is frequently referred to as the tight-binding approximation. Using this method to derive the wave functions and energy band schemes for the core electrons of a crystalline solid is discussed next.
If φn(r -Rj) represents a set of atomic orbital wave functions that satisfy the free-atom Schrödinger equation, then one can write
()()()(22*2njnojnjnonrRVrRrRErRmφφ⎛⎞−∇−+−−=−⎜⎟⎜⎟⎝⎠h (4.87)
ตอนนี้ แทน Eqs (4.61) และ (4.62) Eq. (4.53) และใช้กระบวนการเดียวกันตามที่อธิบายไว้ข้างต้นสำหรับการแก้ไขใบสั่งแรกของฟังก์ชันคลื่นของอิเล็กตรอน หนึ่งได้รับการแก้ไขลำดับที่สองของพลังงาน ซึ่งเป็น(220nmnmnomomnHEEE∞ =≠′ =−Σ (4.63)ใช้ Eq. (4.63), นิพจน์สำหรับอิเล็กตรอนพลังงานแก้ไขเป็นลำดับที่สองถูกกำหนดโดย() 20nmnnomnomomnHEEEE∞ =≠′ = + −Σ (4.64)(4.64) และสมการ (4.59) คือ ฟังก์ชันคลื่นใหม่และพลังงานของอิเล็กตรอนที่มาจากทฤษฎีควอนตัมกับ perturbation เครื่องจักรกล ผลอาจจะใช้ในประมาณ NFE หาฟังก์ชันคลื่นและพลังงานของอิเล็กตรอนเปลือกนอกของผลึกของแข็ง เป็นที่กล่าวถึงก่อนหน้านี้ เวเลนซ์อิเล็กตรอนในสารกึ่งตัวนำที่ถูกผูกไว้ซึ่งกับอะตอม และดังนั้น งวดผลึกอาจเห็นเวเลนซ์อิเล็กตรอนเหล่านี้สามารถเป็น Hamiltonian perturbing มีขนาดเล็ก สมการวินอิเล็กตรอนหนึ่งหมายทันทีเป็นภาพโดย222() () ooookkkmrEr−∇ = φφh (4.65)ซึ่งมีวิธีแก้ไขปัญหาของฟังก์ชันคลื่นของอิเล็กตรอนอิสระและพลังงานตามลำดับโดยกำหนดokikrrNVeφ⋅ () 1 = (4.66)222okokEm = h (4.67)ซึ่ง N คือ จำนวนของหน่วยเซลล์ใน V คือ ปริมาตรของหน่วยเซลล์ okφ(r) เป็นฟังก์ชันคลื่นของอิเล็กตรอนอิสระ และ พลังงานอิเล็กตรอนอิสระ อัตราเนนก่อนกำหนด โดย Eq. (4.66) เป็นค่าคงฟื้นฟู สมการวินอิเล็กตรอนหนึ่งในต่อหน้าของผลึกเป็นระยะ ๆ V(r) อาจถูกกำหนด โดยโอคลอดจ์() 22*()() () 2kkkrVrrErm⎛⎞−∇ += ⎜⎟⎜⎟⎝⎠φφh (ภาษาอังกฤษ 4.68)M * มีประสิทธิภาพโดยรวมของอิเล็กตรอนในผลึก เป็นคริสตัลที่ V(r) ที่สามารถแสดงในรูปของขยายฟูรีเยในพื้นที่ซึ่งกันและกัน ซึ่งถูกกำหนดโดยjjKijKrKVrve−⋅ ()() =Σ (4.69)ที่ Kj เวกเตอร์โครงตาข่ายประกอบซึ่งกันและกัน และ v(Kj) ค่าสัมประสิทธิ์ฟูรีเยของ V(r) อาจเกิดขึ้นเป็นครั้งคราวฟังก์ชันคลื่นของอิเล็กตรอนใหม่และพลังงานสามารถได้รับ โดยการหาเมตริกซ์องค์ประกอบ Hk′k เนื่องจากคริสตัลเป็นครั้งคราวเป็น V(r) โดยใช้วิธี perturbation เครื่องเขียนอธิบายไว้ข้างต้น ตอนนี้ แทน Eq. (4.69) เป็น Eq.(4.60) เมตริกซ์องค์ประกอบเนื่องจาก V(r) เป็นไปได้เป็นครั้งคราวได้ด้วย3*''()| ()| kkkkHrVrrdr () =∫φφjjjKiKrikrikrvKdrNVeee−⋅′−⋅⋅⎛⎞ ()() 31 =⎜⎟⎝⎠Σ∫ (4.70)หมายเหตุว่า ทฤษฎีบูรณาการทางด้านขวามือของ Eq. (4.70) จะหายยกเว้น k – k′ =ล ที่ Kj เป็นเวกเตอร์โครงตาข่ายประกอบซึ่งกันและกัน ดังนั้น โดยแทน k – k′ = Kj ใน Eq.(4.70) และการดำเนินการรวมหนึ่งเหตุผลkkjHKv′ () = (4.71)แทน Eq. (4.71) ลงใน (4.59) ทำให้ตอนนี้ ฟังก์ชันคลื่นใหม่ของอิเล็กตรอน ซึ่งเป็น1jjiKjkooKkkrikrvKereNVEE−⋅′⋅ ()() 1 () = + −⎡⎤⎢⎥⎢⎥⎣⎦Σφ (4.72)เป็นที่น่าสนใจทราบว่า คำในวงเล็บสี่เหลี่ยมทางด้านขวามือของ Eq. (4.72) มีประจำงวดของศักยภาพคริสตัล V(r) และอาจถูกกำหนดเป็น uk(r) ฟังก์ชันเม็ดเลือดขาว ดังนั้น อิเล็กตรอนใหม่ที่มีฟังก์ชันคลื่นโดย Eq. (4.72) แน่นอนพอฟังก์ชันคลื่นชนิดเม็ดเลือดขาวที่ถูกกำหนด โดย Eq. (4.17)ค่าของพลังงานอิเล็กตรอนสามารถถูกสืบทอดมาในลักษณะคล้ายกัน โดย Eq. แทน (4.71) เป็น Eq (4.64), และก่อให้เกิดผล2jjokkooKkkvKEEEE′ ()() = + −Σ (4.73)จะเห็นได้ว่า นิพจน์สำหรับอิเล็กตรอนคลื่นและพลังงานโดย Eqs (4.72) (4.73) เป็น อินฟินิตี้และถ้า และดังนั้น ประมาณ perturbation ไม่ถูกต้อง สภาวะนี้เกิดที่ขอบเขต และพลังงานอิเล็กตรอนที่สอดคล้องกับเงื่อนไขนี้ถูกกำหนด โดย okEE′ =′− 22222jokkKkEmm () === ชช (4.74)แก้ Eq.(4.74) ทำให้22jjKkK⋅ = (ระดับ 4.75)นี่ k′ ความสัมพันธ์ = k – ใช้ Kj ใน Eq. (4.74) สมการ (ระดับ 4.75) แสดงว่า Bragg การเลี้ยวเบนเงื่อนไขในผลึกของแข็ง ซึ่งเกิดขึ้นในขอบเขต ความล้มเหลวของทฤษฎี perturbation ในขอบเขตได้เนื่องจากข้อเท็จจริงที่คริสตัลประจำงวด V(r) เป็นไปได้ในขอบเขตไม่เล็ก และดังนั้น ไม่ถือว่าเป็นศักยภาพที่ perturbing เล็ก ในความเป็นจริง เงื่อนไขการเลี้ยวเบน Bragg ผลลัพธ์ใน perturbation ความรุนแรงของฟังก์ชันคลื่นของอิเล็กตรอนในขอบเขต ดังนั้น หาทางออกที่เหมาะสมสำหรับอิเล็กตรอนพลังงานและฟังก์ชันคลื่นที่ขอบเขต จำเป็นต้องสร้างใหม่ perturbed คลื่นฟังก์ชัน ซึ่งเป็นการรวมเชิงเส้นการเหตุการณ์และเครื่องบินที่สะท้อนคลื่น โดยใช้การรวมเชิงเส้นของคลื่นเหตุการณ์ - และผลเครื่องบิน หนึ่งสามารถสร้างฟังก์ชันคลื่นอิเล็กตรอนใหม่ที่ขอบเขต ซึ่งถูกกำหนดโดยo1 () koikrikrrAeAeφ⋅′⋅ = + (4.76)ที่ k′ = k – Kj Substituting Eq. (4.76) เป็นผลผลิต Eq. (4.65)()() 22221220ikrikrkokkkVrEAeVrEAemm′⋅⎧⎫⎧⎫′⎪⎪⎪⎪ + − ++ − = ⎡⎤⎡⎤⎨⎬⎨⎬⎣⎦⎣⎦⎪⎪⎪⎪⎩⎭⎩⎭hh (4.77)ตอนนี้ คูณ Eq. (4.77) และการรวมสมการผ่านพื้นที่ทั้งหมด หนึ่งเหตุผล ikre−⋅()() * 10ookkjAEEAvK−− (4.78)Where22 = 2okokEmh และ v*(Kj) ค่าสังยุคของสัมประสิทธิ์ฟูรีเย ถูกกำหนดโดย()() (4.79) * 0ikrikrjvKeVredr∞−⋅⋅ =∫ในทำนองเดียวกัน คูณ Eq. (4.77) e – ik′· r และบูรณาการผ่านพื้นที่ทั้งหมด หนึ่งเหตุผล10oojkkAvKAEE′−− ()() = (4.80)ที่ 22'= 2okokEm′h และ30ikrikjrvKeVredr∞′−⋅⋅ ()() (4.81) =∫คือค่าสัมประสิทธิ์ฟูรีเยของคริสตัลประจำงวด V(r) อาจเกิดขึ้น โซลูชั่น nontrivial อยู่ใน Eqs (4.78) (4.80) เท่านั้นถ้าดีเทอร์มิแนนต์ของสัมประสิทธิ์ของอ่าวและ A1 เท่ากับศูนย์ ได้แก่ และ()()()() * 0okkjojkkKKEEvvEE′−− =−− (4.82)แก้ Eq. (4.82) สำหรับเอก และผลทำให้ตอนนี้()()()() 122 * 142ooookkkkkjjKEEEEEvKv′′⎧⎫⎪ ⎡⎤ = + ±− + ⋅⎨⎢⎥⎣⎦⎪⎪⎩⎭ (4.83)สมการ (4.83) แสดงว่า ช่องว่างต้องห้ามอยู่ที่ขอบเขต และความกว้างของช่องว่างต้องห้ามจะถูกกำหนด โดยค่าของ 4v*(Kj).v(Kj) ภายในวงเล็บสี่เหลี่ยมของ Eq.(4.83) ซึ่งจะถูกกำหนด โดยค่าสัมประสิทธิ์ฟูรีเยของคริสตัลเป็นครั้งคราวไป ทั่วไป ช่องว่างแถบพลังงานจะเพิ่มขึ้น ด้วยการเพิ่มค่าของ jvK ()สัมประสิทธิ์ฟูรีเย รูปที่ 4.7 แสดงไดอะแกรมวงพลังงานมันในร่างโซนลดลงมาประมาณ NFE เป็นที่น่าสนใจทราบว่า มาประมาณ NFE โครงร่างแถบพลังงานที่ได้จากแบบจำลอง Kronig-Penney ในโครงตาข่ายประกอบเป็นครั้งคราว 1 D นอกจากนี้ อิเล็กตรอนที่มีฟังก์ชันคลื่นมาประมาณ NFE แน่นอนพอใจสภาพเม็ดเลือดขาว ผลลัพธ์แสดงว่า ยกเว้นในขอบเขตที่การเกิดขึ้นของโฮเป็นพลังงาน (หรือช่องว่างวง) โครงร่างวงพลังงานมาประมาณ NFE คล้ายกับที่กรณีอิเล็กตรอนอิสระ (ด้วย v(Kj) = 0) กล่าวก่อนหน้านี้ประมาณ NFE ในส่วนนี้ให้คำอธิบายเชิงคุณภาพรัฐอิเล็กทรอนิกส์สำหรับเปลือกนอกเวเลนซ์อิเล็กตรอนของโครงตาข่ายประกอบคริสตัล 3 มิติ อย่างไรก็ตาม เพื่อให้ได้โครงสร้างแถบพลังงานจริงสำหรับคริสตัลจริง อย่างเข้มงวด และซับซ้อนมากขึ้นวิธีการ เช่นวิธีคลื่นระนาบ orthogonalized หรือ pseudopotential ที่ต้องทำงานในการคำนวณวงพลังงาน ใช้ทั้งสองวิธีในการคำนวณวงพลังงานของอิเล็กทรอนิกส์อย่างกว้างขวาง4.6. THE TIGHT-BINDING APPROXIMATIONIn this section energy band calculation using the tight-binding approximation or the linear-combination-of-atomic-orbits (LCAO) method is depicted. The LCAO method, which was first proposed by Bloch, is often used tocalculate the electronic states of core electrons in a crystalline solid. It is generally known that core electrons are tightly bound to the individual atoms, which interact with one another within the crystal lattice. In this case, the construction of electron wave functions is achieved using the LCAO method, and the energy bands of electrons are calculated for the corresponding periodic crystal potential. The atomic orbitals are centered on one of the constituent atoms of the crystal. The resulting wave functions are then substituted into the Schrödinger equation, and the energy values are calculated by a procedure similar to that of the NFE approximation described in Section 4.5. In order to apply the LCAO method to core electrons in a crystalline solid, the solution for the free atomic orbital wave functions must be obtained first. This is discussed next.If φn(r - Rj) represents the atomic orbital wave functions centered at the lattice site Rj, then the wave functions of the crystal orbits φk(r) corresponding to the wave vector krmay be represented by a Bloch sum, which is()()()kjnjrCkrRφφ= Σ (4.84)The summation in Eq. (4.84) extends over all the constituent atoms of the crystal. The coefficient Cj(K), which satisfies the Bloch condition, can be written as()jikRjCke⋅= (4.85)Now substituting Eq. (4.85) into Eq. (4.84) one obtains()()()(),jikrRikrikrknjjreerReUφφ−⋅−⋅=−=Σ (4.86)To satisfy the Bloch condition, the summation given by Eq. (4.86) must have the periodicity of the crystal lattice.The LCAO method is clearly an approximation to the true crystal orbitals. This method is adequate when the interatomic spacing is large enough such that overlapping among the atomic orbital wave functions φn(r - Rj) is negligible. Thus, the LCAO method is most suitable for the tightly bound core electrons, and is frequently referred to as the tight-binding approximation. Using this method to derive the wave functions and energy band schemes for the core electrons of a crystalline solid is discussed next.If φn(r -Rj) represents a set of atomic orbital wave functions that satisfy the free-atom Schrödinger equation, then one can write()()()(22*2njnojnjnonrRVrRrRErRmφφ⎛⎞−∇−+−−=−⎜⎟⎜⎟⎝⎠h (4.87)
การแปล กรุณารอสักครู่..
