Abstract
Rigid polyurethane foam (PUF) was prepared by the reaction of bio-polyol prepared from liquefied sugar-cane bagasse (LBP) with commercial methylene diphenyl diisocyanate (MDI) and polyethylene glycol in the presence of N,N-dimethylcyclohexylamine as a catalyst, water as a chemical blowing agent, and silicon oil as a surfactant. The effect of partial replacement of polyethylene glycol polyol (PEG) by the prepared bio polyol on physical, mechanical, thermal conductivity, and thermal stability of polyurethane foam was studied. The obtained results revealed that, the prepared polyurethane foam showed longer cream and tack free times more than blank polyurethane foam (100% PEG). The foam density and compressive strength improved with increasing of biomass-based polyol content. Increasing the percents of bio polyol more than 30% replacement resulted in heterogeneous surface and irregular pore shape. Also thermal conductivity reduced from 0.035 to 0.029 with increasing bio polyol content. Polyurethane foam additives such as blowing agent, catalyst, and surfactant content effects on polyurethane foam properties were studied.