The sorption of Cu2+, Cd2+ and Pb2+ from aqueous solutions by unmodified (UBSH) and modified (MBSH) African breadfruit (Treculia africana) seed hull has been investigated. The amount of ions adsorbed by the hulls was depen- dent on the contact time range, 10 min – 120 min at optimum pH, 7.5 and temperature, 30 oC. Results revealed that the amount of metal ions adsorbed increased with time for both UBSH and MBSH, as well as a slight drop in the amount of Cd2+ adsorbed between contact time 60 min and 90 min for only UBSH. The rate of removal of the metal ions from their solutions was rapid, as appreciable amounts (96 % – 99 %) were adsorbed by the adsorbents at the least contact time (10 min) of the experiment. However, sorption capacity trend of the metal ions was Pb2+ > Cd2+ > Cu2+ for both UBSH and MBSH. Modification by thiolation of the adsorbent showed enhancement mainly in the sorption of Cu2+ and Cd2+ and a reduction for Pb2+ due to low affinity of Pb2+ for –SH groups. A comparison of kinetic models applied to the sorption process was evaluated for Pseudo-first order and Pseudo-second order models, with Pseudo-second order providing a better fit to the experimental data with high R2 values ranging 0.9999 to 1. McKay & Poot intraparticle diffusion model also pro- vided a good fit to the experimental data with more R2 values close to 1 than Weber & Morris model, thus suggesting the sorption process to be intraparticle diffusion controlled. Generally, the results from this study, indicates that a good adsor- bent can be obtained from both unmodified and thioglycollic acid-modified breadfruit seed hull.