One of my favorite things to do with a student the first time they work with DNA plasmid preps is to have them run an agarose gel containing 2 samples: uncut plasmid DNA, and plasmid DNA that has been linearized with an restriction enzyme. I love to have them try and figure out the banding pattern of uncut plasmid DNA (why do you see 2-3 bands?) versus the single band of linearized DNA (and why do all bands convert to 1 band when linearized?).
I like this exercise because understanding the forms they are seeing on the gel requires an understanding of the nature of DNA. In this article I will focus on the four most common species of plasmid DNA observed on a gel and how to recognize them. And in my next article I’ll cover how to increase recovery of the desired supercoiled species.
When plasmid DNA is isolated and run on an agarose gel, you may observe 2, 3 or even 4 or more bands. Hopefully the majority of your isolated DNA will be supercoiled DNA, but other forms can also crop up. How these forms will show up on an agarose gel (in terms of relative migration speeds) is shown in the diagram below.
Supercoiled Plasmid
Supercoiled DNA is the native confirmation found in vivo and occurs when extra twists are introduced into the double helix strand. People often compare the forms of DNA to rubber bands or telephone cords (I know some you must still remember phones with cords!). If you over twist a rubber band or telephone cord, coils stack up upon one another introducing tension. In the case of plasmid preps, this superhelical tension cannot be relieved because the ends of the plasmid are joined together. Supercoiled DNA migrates faster than predicted in an agarose gel due to its conformation. Supercoiled DNA is the desired species when isolating plasmid DNA.