3.2. Pump operation cost
Hydraulic balance
The pressure delivered by a pump (i.e. the piezoelectric head difference across it) can be described by a set of linear constraints that
3.4. Mass balance at network nodes
3.5. Demand response cost function and constraints
5. Results and discussion
We investigate three aspects of demand response from WDS, how optimal pump operations change to enable the provision of demand response before and during a DR event, requirements needed for the provision of DR through pump scheduling to be financially viable and the environmental aspects of DR from WDS and how it compares to other alternative response energy provision technologies.
The results and discussion are separated into sections focusing on the financial viability of providing DR from WDS in Section 5.1, the GHG emissions associated with the provision of DR in Section 5.2, and the optimal scheduling for DR provision and DR events in Section 5.3.
Financial viability
Fig. 7 shows the volume formed by the combinations of price ratios, reward size and pump utilization rate that are financially viable to provide a FFR or FCDM service from the Van Zyl Network when assuming a maximum event duration of 30 min. It shows that a high pump utilization rate, high reward and low price ratio benefit the financial viability of the fast response schemes. It also
demonstrates that the ratio of the maximum and minimum prices of the electricity pattern as well as the pump utilization rate have the strongest effect on the financial viability of the DR service. The reward level on the other hand has a lower impact on the financial viability. Demand response through FFR provides the highest amount of yearly revenue for committed power while requiring the least amount of energy provision. The revenue primarily stems from the nomination and availability payments for the power capacity provided and to a lesser extend from the energy provision. Assuming a WDS can fulfill the technical requirements with regards to size and pump switching speeds, it could provide a good opportunity for a profitable committed demand response provision if the pump utilization rate and the electricity tariffs are moderately high. Otherwise, a bespoke FCDM agreement where the peak hours of the contract are spared out could provide a viable alternative.
The financial viability of STOR services is explored with an annual reward of £25,000/MW, which represents the lower bound estimate of the revenue from availability payments alone, based on approximately 3500 h of availability per year and E7-9/MW avail¬ability payments as detailed in Table ใ. The optimal power level to commit to be available for STOR provision in both availability windows is shown in Fig. 8. Fig. 9 shows the same for provision in the first availability window only. The two figures show that for lower pump utilization rates no STOR service is viable as the optimum power is 0 kw. For a small range of pump utilization rates and electricity peak price ratios, STOR provision from the booster pump with 89 kw is the optimal power for DR while for a large range of pump utilisation rates J la pump from the main pump station with 178 kw can be committed to STOR provision. With a reward of £25,000/MW, the additional revenue from DR provision, if viable, can be up to 4.6% of the normal operating cost.
The cost of scheduling for STOR relative to normal operations not only depends on the pump utilization ratio and maximum price of the electricity tariff, but also on which availability windows STOR is offered in. If only the first STOR window is used, a wider range of conditions and a larger capacity of pump power can be committed to the provision of demand response. On the other hand, also providing STOR services in the second STOR win¬dow as well reduces the range of financially viable options as the peak electricity price becomes more relevant.
The cost of providing response energy in a STOR event are estimated by modeling a wide range of events in a Monte Carlo simulation, as shown in Fig. 10. Table 4 shows that the cost of energy when rescheduling due to an event reduces the income generated
3.2 . ต้นทุนการผลิตปั๊มสมดุลของไฮโดรลิคดันส่งโดยปั๊ม ( เช่น piezoelectric หัวแตกต่างขวาง ) สามารถอธิบายได้ด้วยชุดของข้อจำกัดเชิงเส้นที่3.4 . สมดุลมวลที่โหนดเครือข่าย3.5 . ความต้องการการตอบสนองฟังก์ชันต้นทุนและข้อจำกัดต่างๆ5 . ผลและการอภิปรายเราศึกษา 3 ด้านความต้องการการตอบสนองจาก WDS , วิธีการดำเนินงานที่เหมาะสมเปลี่ยนปั๊มเพื่อให้บทบัญญัติของการตอบสนองความต้องการก่อนและในระหว่างดรเหตุการณ์ความต้องการที่จําเป็นสําหรับการดร ผ่านปั๊มตารางเพื่อวางอนาคตทางการเงิน และด้านสิ่งแวดล้อม ด้าน ดร. จาก WDS และวิธีการเปรียบเทียบกับทางเลือกอื่น ๆการตอบสนองการให้พลังงานเทคโนโลยีผลและการอภิปรายจะแยกเป็นส่วนที่เน้นความสามารถทางการเงินให้ดรจาก WDS ในส่วน 5.1 , การปล่อยก๊าซเรือนกระจกที่เกี่ยวข้องกับบทบัญญัติในส่วนของดร 5.2 และเหมาะสมในการจัดกิจกรรม ดร ดร และในมาตรา 5.3 .สามารถทางการเงินรูปที่ 7 แสดงระดับเสียงที่เกิดขึ้นจากการผสมอัตราส่วนของราคาและอัตราการใช้ปั๊มขนาดรางวัลที่มีความเป็นไปได้ที่จะให้เทคโนโลยีหรือบริการ fcdm จากรถตู้ Zyl เครือข่ายเมื่อสมมติเหตุการณ์สูงสุดระยะเวลา 30 นาที แสดงว่าปั๊มสูงอัตราการใช้สูง รางวัล และอัตราส่วนราคาต่ำได้รับประโยชน์สามารถทางการเงินของ การตอบสนองที่รวดเร็วโครงร่าง มันยังแสดงให้เห็นว่าอัตราส่วนสูงสุดและราคาต่ำสุดของไฟฟ้าเป็นปั๊มแบบอัตราการใช้ที่มีผลต่อความอยู่รอดทางการเงินของบริการของ ดร. รางวัลระดับบนมืออื่น ๆมีการลดผลกระทบต่อชีวิตทางการเงิน การตอบสนองความต้องการผ่านการปลูกถ่ายอวัยวะมีปริมาณสูงสุดของรายได้รายปีสำหรับความมุ่งมั่นพลังในขณะที่ต้องใช้จำนวนเงินที่น้อยที่สุดของการจัดหาพลังงาน รายได้หลักมาจากการสรรหาและความพร้อมการชําระเงินเพื่อให้พลังงานและความจุน้อยกว่าขยายจากการให้พลังงาน สมมติว่าเป็น WDS สามารถตอบสนองความต้องการทางด้านเทคนิคเกี่ยวกับขนาดและความเร็วในการปั๊มสลับ , มันสามารถเป็นโอกาสที่ดีสำหรับผลกำไรความต้องการการตอบสนองการกระทำถ้าปั๊มมีอัตราการใช้กระแสไฟฟ้าและอัตราภาษีสูงปานกลาง มิฉะนั้น fcdm bespoke สัญญาที่ชั่วโมงเร่งด่วนของสัญญาจะปล่อยออกมาสามารถเป็นทางเลือกที่ทำงานได้สามารถทางการเงินของบริการคลังสํารวจ กับรางวัลประจำปีของกว่า 25 , 000 / MW ซึ่งเป็นขอบเขตล่างของประมาณการรายได้จากเงินว่างคนเดียว ตามประมาณ 3500 H ว่างต่อปี และ e7-9 / MW ใช้¬ความสามารถในการชําระเงิน ดังรายละเอียดในตาราง ๆ . ระดับพลังที่เหมาะสมที่จะยอมรับที่จะสามารถใช้ได้สำหรับการใช้ Windows เป็น stor ทั้งสองแสดงในรูปที่ 8 รูปที่ 9 แสดงเหมือนกับบทบัญญัติในหน้าต่างห้องพักแรกเท่านั้น สองตัวเลขที่แสดงให้เห็นว่าการลดอัตราการใช้บริการ ไม่มีบริการปั๊ม stor ได้เป็นพลังงานที่เหมาะสมเป็น 0 กิโลวัตต์ สำหรับช่วงเล็ก ๆของการใช้ไฟฟ้าสูงสุด ราคาปั๊มอัตราและอัตราส่วนการคลังจากปั๊มน้ำกับ 89 กิโลวัตต์ เป็นอำนาจที่เหมาะสมสำหรับดร ในขณะที่ช่วงขนาดใหญ่ของปั๊มเพียงอัตรา J ลาปั๊มจากสถานีสูบน้ำหลักกับ 178 กิโลวัตต์สามารถกระทำสามารถออกกฎหมาย กับรางวัลกว่า 25 , 000 / MW , รายได้เพิ่มเติมจาก ดร. บัญญัติ ถ้าใช้การได้ สามารถขึ้น 4.6% ของต้นทุนปกติค่าใช้จ่ายของตารางสำหรับ stor เทียบกับการดําเนินงานปกติไม่เพียง แต่ขึ้นอยู่กับการใช้อัตราส่วนของราคาสูงสุดและปั๊มไฟฟ้า ภาษี แต่ยังที่คลังพร้อม Windows เสนอใน ถ้าเพียงครั้งแรก stor หน้าต่างใช้ช่วงกว้างของเงื่อนไขและความจุขนาดใหญ่ของปั๊มพลังสามารถกระทำเพื่อให้ตอบสนองความต้องการ บนมืออื่น ๆที่ยังให้บริการคลังที่สองในคลังชนะ¬ดาวรวมทั้งลดช่วงของตัวเลือกทางการเงินที่ทำงานได้เป็นพีคไฟฟ้า ราคาจะกลายเป็นที่เกี่ยวข้องมากขึ้นต้นทุนของการให้พลังงานในการตอบสนองต่อเหตุการณ์ที่คลังจะประมาณแบบช่วงกว้างของเหตุการณ์ในมอนติ คาร์โล ดังแสดงในรูปที่ 10 ตารางที่ 4 แสดงให้เห็นว่าต้นทุนของพลังงานเมื่อปรับเปลี่ยนเงื่อนไขเนื่องจากเหตุการณ์ลดรายได้ที่สร้างขึ้น
การแปล กรุณารอสักครู่..
