7. Conclusion
Biodiversity has become an important environmental issue
after the Earth Summit in Rio de Janeiro in 1992 and the international
community has pledged to reduce seriously its erosion.
However, the funding allocated to the protection of biodiversity
are extremely limited and it is therefore necessary to use them
as effectively as possible. For this purpose, mathematical optimization
is therefore a natural tool. Many articles in the literature of
operations research or biological conservation deal with this subject.
To illustrate help that mathematical optimization can bring
to the protection of biodiversity, we have chosen to present, in
some detail, a few problems appearing in important areas of biodiversity
protection as the selection of nature reserves, the control of
adverse effects caused by landscape fragmentation, the ecological
exploitation of forests, the control of invasive species and the
maintenance of genetic diversity. For lack of space, we do not review,
far from it, all the literature regarding the optimization approach
applied to the protection of biodiversity. Among the
problems presented, some are well solved and others less well.
For example, the methods currently proposed to select a connected
reserve (Section 2.3.2), to identify a subset of parcels such that the
associated species diversity is maximum (Section 2.6), to connect
an optimally set of reserves by a network of corridors (Section
3.2), to select the investments to be carried in a network of biological
corridors to enhance its permeability (Section 3.3), or to partition
a population into two subpopulations of minimum average
kinship (Section 6.3) do not allow instances of large size to be
treated accurately. Research is still needed to progress in solving
these difficult problems in order to deal with real instances satisfactorily.
Also note that many theoretical studies have not led to
real actions for conservation. This is what Knight et al. (2008) call
the ‘‘research-implementation gap’’, a widespread phenomenon,
far beyond the field of biodiversity protection. To reduce this
gap, the authors recommend researchers to identify problems with
the help of conservation practitioners, to ask questions in a broader
context of conservation management and to take more account of
the social dimension action of conservation. In conclusion we can
say that mathematical optimization is an essential tool for efficient
protection of biodiversity, that many studies have been devoted to
this issue and that some of them have already led to practical decisions.
However much remains to be done in defining and solving
realistic models while trying to establish close relations between
researchers and practitioners.
7. บทสรุปความหลากหลายทางชีวภาพเป็น ประเด็นด้านสิ่งแวดล้อมที่สำคัญหลังจากการประชุมสุดยอดโลกในริโอเดอจาเนโรในปี 1992 และการต่างประเทศมีบริจาคจากชุมชนเพื่อลดการพังทลายของอย่างจริงจังอย่างไรก็ตาม เงินทุนที่จัดสรรเพื่อการคุ้มครองความหลากหลายทางชีวภาพมีจำนวนจำกัดมาก และดังนั้นจึงจำเป็นต้องใช้อย่างมีประสิทธิภาพที่สุด สำหรับวัตถุประสงค์นี้ เพิ่มประสิทธิภาพทางคณิตศาสตร์จึงเป็นเครื่องมือธรรมชาติ บทความต่าง ๆ ในวรรณคดีของการดำเนินการวิจัยหรือชีวภาพอนุรักษ์จัดการกับเรื่องนี้การแสดงทางคณิตศาสตร์ที่ช่วย เพิ่มประสิทธิภาพสามารถนำการปกป้องความหลากหลายทางชีวภาพ เราเลือกนำเสนอ ในรายละเอียดบาง ปัญหาน้อยที่ปรากฏในพื้นที่สำคัญของความหลากหลายทางชีวภาพป้องกันเป็นตัวเลือกของธรรมชาติสำรอง การควบคุมผลข้างเคียงที่เกิดจากการกระจายตัวแนวนอน การระบบนิเวศใช้ประโยชน์จากของป่า ควบคุมพันธุ์รุกรานและการบำรุงรักษาความหลากหลายทางพันธุกรรม ขาดพื้นที่ เราไม่ตรวจทานจากนั้น วรรณคดีทั้งหมดเกี่ยวกับวิธีการเพิ่มประสิทธิภาพกับการคุ้มครองความหลากหลายทางชีวภาพ ระหว่างปัญหาการนำเสนอ บางจะแก้ไขได้ดีและคนไม่ดีตัวอย่าง วิธีการที่เสนอให้เลือกการเชื่อมต่อปัจจุบันจองห้องพัก (ส่วน 2.3.2), การระบุชุดย่อยของหีบห่อที่จะความหลากหลายของสปีชีส์ที่เกี่ยวข้องเป็นสูงสุด (ส่วน 2.6), การเชื่อมต่อการตั้งค่าอย่างเหมาะสมโดยเครือข่ายของทางเดิน (ส่วนของ3.2), to select the investments to be carried in a network of biologicalcorridors to enhance its permeability (Section 3.3), or to partitiona population into two subpopulations of minimum averagekinship (Section 6.3) do not allow instances of large size to betreated accurately. Research is still needed to progress in solvingthese difficult problems in order to deal with real instances satisfactorily.Also note that many theoretical studies have not led toreal actions for conservation. This is what Knight et al. (2008) callthe ‘‘research-implementation gap’’, a widespread phenomenon,far beyond the field of biodiversity protection. To reduce thisgap, the authors recommend researchers to identify problems withthe help of conservation practitioners, to ask questions in a broadercontext of conservation management and to take more account ofthe social dimension action of conservation. In conclusion we cansay that mathematical optimization is an essential tool for efficientprotection of biodiversity, that many studies have been devoted tothis issue and that some of them have already led to practical decisions.However much remains to be done in defining and solvingrealistic models while trying to establish close relations betweenresearchers and practitioners.
การแปล กรุณารอสักครู่..

7. Conclusion
Biodiversity has become an important environmental issue
after the Earth Summit in Rio de Janeiro in 1992 and the international
community has pledged to reduce seriously its erosion.
However, the funding allocated to the protection of biodiversity
are extremely limited and it is therefore necessary to use them
as effectively as possible. For this purpose, mathematical optimization
is therefore a natural tool. Many articles in the literature of
operations research or biological conservation deal with this subject.
To illustrate help that mathematical optimization can bring
to the protection of biodiversity, we have chosen to present, in
some detail, a few problems appearing in important areas of biodiversity
protection as the selection of nature reserves, the control of
adverse effects caused by landscape fragmentation, the ecological
exploitation of forests, the control of invasive species and the
maintenance of genetic diversity. For lack of space, we do not review,
far from it, all the literature regarding the optimization approach
applied to the protection of biodiversity. Among the
problems presented, some are well solved and others less well.
For example, the methods currently proposed to select a connected
reserve (Section 2.3.2), to identify a subset of parcels such that the
associated species diversity is maximum (Section 2.6), to connect
an optimally set of reserves by a network of corridors (Section
3.2), to select the investments to be carried in a network of biological
corridors to enhance its permeability (Section 3.3), or to partition
a population into two subpopulations of minimum average
kinship (Section 6.3) do not allow instances of large size to be
treated accurately. Research is still needed to progress in solving
these difficult problems in order to deal with real instances satisfactorily.
Also note that many theoretical studies have not led to
real actions for conservation. This is what Knight et al. (2008) call
the ‘‘research-implementation gap’’, a widespread phenomenon,
far beyond the field of biodiversity protection. To reduce this
gap, the authors recommend researchers to identify problems with
the help of conservation practitioners, to ask questions in a broader
context of conservation management and to take more account of
the social dimension action of conservation. In conclusion we can
say that mathematical optimization is an essential tool for efficient
protection of biodiversity, that many studies have been devoted to
this issue and that some of them have already led to practical decisions.
However much remains to be done in defining and solving
realistic models while trying to establish close relations between
researchers and practitioners.
การแปล กรุณารอสักครู่..
