All those three systems may be associated with the improvement of balance by BW exercise. Children rely more on visual cues than the other sensory cues [24], but children can reweight the three afferent cues since 3 years old in order to maintain balance, and this multisensory reweighting increases with age in children [25]. During BW, the visual cues doesn't provide the child with the visual information necessary to anticipant ground condition, and motor pattern are unconventional, the boys have to reorganize and adapt the changed information from visual, cutaneous and proprioceptive, and vestibular senses, and then enhance the movement control to maintain dynamic balance [26]. It has been reported that prolonged BW exercise causes neural adaptations. Schneider and Capaday [27] and Ung et al. [28] found that daily BW training progressive induced adaptation of the soleus H-reflex. Van Deursen et al. [29] suggested that both FW and BW are mediated by the same central pattern generator (CPG), and only small modifications in the CPG are required in order to produce the different characteristics of each walking mode. The reorganization of the muscle synergies or neuromotor control in lower limbs during BW might be a possible reason for the improvement of balance by BW exercise.