There are many recipes for the proportion of clay, but they all strike different balances between moldability, surface finish, and ability of the hot molten metal to degas. The coal, typically referred to in foundries as sea-coal, which is present at a ratio of less than 5%, partially combusts in the presence of the molten metal leading to offgassing of organic vapors. Green sand for non-ferrous metals does not use coal additives since the CO created is not effective to prevent oxidation. Green sand for aluminum typically uses olivine sand (a mixture of the minerals forsterite and fayalite which are made by crushing dunite rock). The choice of sand has a lot to do with the temperature that the metal is poured. At the temperatures that copper and iron are poured, the clay gets inactivated by the heat in that the montmorillonite is converted to illite, which is a non-expanding clay. Most foundries do not have the very expensive equipment to remove the burned out clay and substitute new clay, so instead, those that pour iron typically work with silica sand that is inexpensive compared to the other sands. As the clay is burned out, newly mixed sand is added and some of the old sand is discarded or recycled into other uses. Silica is the least desirable of the sands since metamorphic grains of silica sand have a tendency to explode to form sub-micron sized particles when thermally shocked during pouring of the molds. These particles enter the air of the work area and can lead to silicosis in the workers. Iron foundries spend a considerable effort on aggressive dust collection to capture this fine silica. The sand also has the dimensional instability associated with the conversion of quartz from alpha quartz to beta quartz at 1250 degrees F. Often additives such as wood flour are added to create a space for the grains to expand without deforming the mold. Olivine, chromite, etc. are used because they do not have a phase conversion that causes rapid expansion of the grains, as well as offering greater density, which cools the metal faster and produces finer grain structures in the metal. Since they are not metamorphic minerals, they do not have the polycrystals found in silica, and subsequently do not form hazardous sub-micron sized particles.
inert sludge 3 to 5%
anthracite (0 to 1%)