children may repeat that the earth is round, as they have been told, while continuing to believe that the earth is flat, which is what they can see for themselves. They may find a variety of ingenious ways to reconcile their misconception with the correct knowledge, e.g., by concluding that we live on a flat plate inside the round globe.
Teachers must be skilled at uncovering inaccuracies in students’ prior knowledge and observations, and in devising experiences that will challenge inaccurate beliefs and redirect student learning along more productive routes. The students’ natural curiosity provides one entry point for learning experiences designed to remove students’ misconceptions in science and technology/engineering.
GUIDING PRINCIPLE V
Investigation, experimentation, and problem solving are central to
science and technology/engineering education.
Investigations introduce students to the nature of original research, increase students’ understanding of scientific and technological concepts, promote skill development, and provide entry points for all learners. Teachers should establish the learning goals and contexts for investigations, experiments, and laboratories; guide student activities; and help students focus on important ideas and concepts. Lessons should be designed so that knowledge and skills are developed and used together (also see Inquiry, Experimentation, and Design in the Classroom, pages 9–12).
Puzzlement and uncertainty are common features in experimentation. Students need time to examine their ideas as they apply them in explaining a natural phenomenon or solving a design problem. Opportunities for students to reflect on their own ideas, collect evidence, make inferences and predictions, and discuss their findings are all crucial to growth in understanding.
Students should also have opportunities in the classroom to replicate important experiments that have led to well-confirmed knowledge about the natural world, e.g., Archimedes’ principle and the electric light bulb. By examining the thinking of experts, students can learn to improve their own problem-solving efforts.
GUIDING PRINCIPLE VI
An effective science and technology/engineering program builds upon and develops students’ literacy skills and knowledge.
Reading, writing, and communication skills are necessary elements of learning and engaging in science and technology/engineering. Teachers should consistently support students in acquiring comprehension skills and strategies, as well as vocabulary, to deepen students’ understanding of text meaning. Science and technology/engineering texts contain specialized knowledge that is organized in a specific way. For example, scientific texts will often articulate a general principle that describes a pattern in nature, followed by evidence that supports and illustrates the principle. Science and technology/engineering classrooms make use of a variety of text materials, including textbooks, journals, lab instructions, and reports. Texts are generally informational in nature, rather than narrative, and often include high proportions of facts and terms related to a particular phenomenon, process, or structure. Teachers should help students understand that the types of texts students read, along with the purpose(s) for reading these texts, are specific to science and technology/engineering.
children may repeat that the earth is round, as they have been told, while continuing to believe that the earth is flat, which is what they can see for themselves. They may find a variety of ingenious ways to reconcile their misconception with the correct knowledge, e.g., by concluding that we live on a flat plate inside the round globe.
Teachers must be skilled at uncovering inaccuracies in students’ prior knowledge and observations, and in devising experiences that will challenge inaccurate beliefs and redirect student learning along more productive routes. The students’ natural curiosity provides one entry point for learning experiences designed to remove students’ misconceptions in science and technology/engineering.
GUIDING PRINCIPLE V
Investigation, experimentation, and problem solving are central to
science and technology/engineering education.
Investigations introduce students to the nature of original research, increase students’ understanding of scientific and technological concepts, promote skill development, and provide entry points for all learners. Teachers should establish the learning goals and contexts for investigations, experiments, and laboratories; guide student activities; and help students focus on important ideas and concepts. Lessons should be designed so that knowledge and skills are developed and used together (also see Inquiry, Experimentation, and Design in the Classroom, pages 9–12).
Puzzlement and uncertainty are common features in experimentation. Students need time to examine their ideas as they apply them in explaining a natural phenomenon or solving a design problem. Opportunities for students to reflect on their own ideas, collect evidence, make inferences and predictions, and discuss their findings are all crucial to growth in understanding.
Students should also have opportunities in the classroom to replicate important experiments that have led to well-confirmed knowledge about the natural world, e.g., Archimedes’ principle and the electric light bulb. By examining the thinking of experts, students can learn to improve their own problem-solving efforts.
GUIDING PRINCIPLE VI
An effective science and technology/engineering program builds upon and develops students’ literacy skills and knowledge.
Reading, writing, and communication skills are necessary elements of learning and engaging in science and technology/engineering. Teachers should consistently support students in acquiring comprehension skills and strategies, as well as vocabulary, to deepen students’ understanding of text meaning. Science and technology/engineering texts contain specialized knowledge that is organized in a specific way. For example, scientific texts will often articulate a general principle that describes a pattern in nature, followed by evidence that supports and illustrates the principle. Science and technology/engineering classrooms make use of a variety of text materials, including textbooks, journals, lab instructions, and reports. Texts are generally informational in nature, rather than narrative, and often include high proportions of facts and terms related to a particular phenomenon, process, or structure. Teachers should help students understand that the types of texts students read, along with the purpose(s) for reading these texts, are specific to science and technology/engineering.
การแปล กรุณารอสักครู่..