Pressurised Deaerators
The need to remove gases from boiler feedwater and the operation of a pressurised deaerator, plus calculations.
Why gases need to be removed from boiler feedwater
Oxygen is the main cause of corrosion in hotwell tanks, feedlines, feedpumps and boilers. If carbon dioxide is also present then the pH will be low, the water will tend to be acidic, and the rate of corrosion will be increased. Typically the corrosion is of the pitting type where, although the metal loss may not be great, deep penetration and perforation can occur in a short period.
Elimination of the dissolved oxygen may be achieved by chemical or physical methods, but more usually by a combination of both.
The essential requirements to reduce corrosion are to maintain the feedwater at a pH of not less than 8.5 to 9, the lowest level at which carbon dioxide is absent, and to remove all traces of oxygen. The return of condensate from the plant will have a significant impact on boiler feedwater treatment - condensate is hot and already chemically treated, consequently as more condensate is returned, less feedwater treatment is required.
Water exposed to air can become saturated with oxygen, and the concentration will vary with temperature: the higher the temperature, the lower the oxygen content.
The first step in feedwater treatment is to heat the water to drive off the oxygen. Typically a boiler feedtank should be operated at 85°C to 90°C. This leaves an oxygen content of around 2 mg / litre (ppm). Operation at higher temperatures than this at atmospheric pressure can be difficult due to the close proximity of saturation temperature and the probability of cavitation in the feedpump, unless the feedtank is installed at a very high level above the boiler feedpump.
The addition of an oxygen scavenging chemical (sodium sulphite, hydrazine or tannin) will remove the remaining oxygen and prevent corrosion.
This is the normal treatment for industrial boiler plant in the UK. However, plants exist which, due to their size, special application or local standards, will need to either reduce or increase the amount of chemicals used. For plants that need to reduce the amount of chemical treatment, it is common practice to use a pressurised deaerator.