Quantum computing—the manipulation of a quantum mechanical system to do information processing—has attracted considerable recent attention, largely triggered by Shor's proposed algorithm for finding prime factors in polynomial instead of exponential time (1). The importance of this problem has also led to numerous attempts to realize quantum computers, including systems such as trapped ions and quantum dots. In their Research Article, Gershenfeld and Chuang (2) propose the use of a much less exotic system—nuclear magnetic resonance (NMR) of molecules in a room-temperature solution. They demonstrate that such a “bulk spin-resonance” system is capable in principle of doing quantum computation, and they discuss the generation of 6 to 10 quantum bits (“qubits”), which would be a daunting, but not impossible task with today's technology. Of course, solution NMR was used in the 1950s to study equally small molecules, yet today we study proteins with thousands of spins. If an NMR quantum computer were ultimately scalable to larger numbers of qubits (say 100), the implications for computational science would be exciting.