Graphene film is a strong candidate for the replacement of indium tin oxide, which is a commercial product used extensively as a transparent conductor. It is used in touch screens on table computers and smartphones and is used as an electrode in solar cells and OLEDs.
One graphene-based thin film developed by Rice University researchers integrates a high-conductivity graphene single-layer sheet with a fine metal nanowire grid. According to researchers, the material outperforms ITO and other competing materials with lower resistance and higher transparency to electric current.
According to postdoctoral researcher Yu Zhu, fine metal meshes show excellent conductivity; however, gaps in the nanowires render them unsuitable as independent components in conductive electrodes.
Metal grids can be easily produced on a flexible substrate through standard techniques including ink jet and roll-to-roll printing. The transparent electrode designed by Rice researchers has higher conductivity than ITO and is flexible. The film is also eco-friendly and did not deteriorate easily.