Biometric sensors and portable devices are being increasingly embedded into our everyday life, creating the need for robust physiological models that efficiently represent, analyze, and interpret the acquired signals. We propose a knowledgedriven method to represent electrodermal activity (EDA), a psychophysiological signal linked to stress, affect, and cognitive processing. We build EDA-specific dictionaries that accurately model both the slow varying tonic part and the signal fluctuations, called skin conductance responses (SCR), and use greedy sparse representation techniques to decompose the signal into a small number of atoms from the dictionary. Quantitative evaluation of our method considers signal reconstruction, compression rate, and information retrieval measures, that capture the ability of the model to incorporate the main signal characteristics, such as SCR occurrences. Compared to previous studies fitting a predetermined structure to the signal, results indicate that our approach provides benefits across all aforementioned criteria. This paper demonstrates the ability of appropriate dictionaries along with sparse decomposition methods to reliably represent EDA signals and provides a foundation for automatic measurement of SCR characteristics and the extraction of meaningful EDA features.
Biometric sensors and portable devices are being increasingly embedded into our everyday life, creating the need for robust physiological models that efficiently represent, analyze, and interpret the acquired signals. We propose a knowledgedriven method to represent electrodermal activity (EDA), a psychophysiological signal linked to stress, affect, and cognitive processing.เราสร้างใหม่เฉพาะพจนานุกรมที่ถูกต้องแบบที่ทั้งช้าและโทนิค ส่วนสัญญาณความผันผวนที่เรียกว่าการตอบสนองระบบผิวหนัง ( SCR ) และใช้เทคนิคการแสดงโลภโปร่งส่วนสัญญาณเป็นจำนวนเล็ก ๆของอะตอมจากพจนานุกรม การประเมินผลเชิงปริมาณของวิธีการพิจารณาฟื้นฟู , สัญญาณอัตราการบีบอัด and information retrieval measures, that capture the ability of the model to incorporate the main signal characteristics, such as SCR occurrences. Compared to previous studies fitting a predetermined structure to the signal, results indicate that our approach provides benefits across all aforementioned criteria. This paper demonstrates the ability of appropriate dictionaries along with sparse decomposition methods to reliably represent EDA signals and provides a foundation for automatic measurement of SCR characteristics and the extraction of meaningful EDA features.
การแปล กรุณารอสักครู่..
