3.4. Model fitting and ANOVA
The data obtained for color removal were fitted to various models including linear, two factorial, quadratic and cubic. High and low levels of each factor were coded as 1 and −1, respectively, and the mean value was coded as zero. The analysis of variance shows that the process is most suitably described with a cubic polynomial model. The equation of the model in terms of coded factors is as follows:
Color removal (%) = +11.32−47.47 A−6.28B−17.73 C + 4.10B2
+15.83 C2+55.59 A3+6.16B3 (3)
where A is the coagulant dose, B the pH, and C the dye concentra- tion.
The ANOVA for the model is presented in Table 2. By using an F-test, the significance and lack of fit of the model were evaluated. According to ANOVA, the lack of fit was not significant at the 95% confidence level. The F-value of the model (13.91) with a P-value less than 0.0001 implied that the model was significant. The small P- value and a high coefficient of determination (R2 = 0.8903) showed the suitability of the model for representing the real relationship among the variables.
The significance of each parameter in the model was examined by testing the null hypothesis. If the P-value is less than the signif- icance level, the null hypothesis is rejected, which means that the term is significant (Lee et al., 2010). Some of the insignificant terms of the model were not eliminated to maintain the model hierarchy and obtain a not significant lack of fit. Eliminating all insignificant terms causes that the adjusted R2 (a measure of the amount of variation around the mean explained by the model, adjusted for the number of terms in the model) decreases and the lack of fit
becomes significant (Chaibakhsh et al., 2010). The results show that the coagulant dose and dye concentration significantly affect the color removal performance of O. basilicum and the dye con- centration is the most significant parameter. However, pH (within the selected range) is not a significant factor in the color removal efficiency of the natural coagulant. The parameters also have no interactive effects on the response. This means that the modifica- tion of one of the factors does not affect the other factors inside the working region. Negative coefficient values of the individual factors, A, B and C, indicate that the factors negatively affect the response and by increasing these terms the color removal percent- age may decrease.
Fig. 6 shows the experimental versus predicted color removal percentage obtained from the Eq. (1). The linear distribution is indicative of a well-fitting model. The normal probability plot is also presented in Fig. 6. The plot shows that the residuals follow a nor- mal distribution. The generated mathematical model can be used for prediction of the color removal percentage within the given range of the main parameters.
It should be mentioned that the data obtained for COD reduction could not be fitted well to the models including linear, two factorial, quadratic and cubic. It seems that using a suitable experimental design or employing other nonlinear modeling techniques such as
neural networks, fuzzy logic or a combination of these approaches could be useful for this aim (Sanayei et al., 2014).
3.4 รุ่นที่เหมาะสมและการวิเคราะห์ความแปรปรวนข้อมูลที่ได้รับการกำจัดสีกำลังพอดีกับรูปแบบต่าง ๆ รวมทั้งการเชิงเส้นสองปัจจัย, กำลังสองและลูกบาศก์ ในระดับที่สูงและต่ำของแต่ละปัจจัยที่ถูกเข้ารหัสเป็นที่ 1 และ -1 ตามลำดับและค่าเฉลี่ยเป็นรหัสเป็นศูนย์ การวิเคราะห์ความแปรปรวนแสดงให้เห็นว่ากระบวนการที่เกิดขึ้นส่วนใหญ่อธิบายที่เหมาะสมกับรูปแบบพหุนามลูกบาศก์ สมการของรูปแบบในแง่ของปัจจัยรหัสเป็นดังนี้: กำจัดสี (%) = + 11.32-47.47-6.28B-C + 17.73 4.10B2 15.83 C2 + 55.59 A3 + 6.16B3 (3) ที่เป็น ปริมาณการตกตะกอน, บีพีเอช, สีย้อมและ C เข้มข้นการ. ANOVA สำหรับรูปแบบที่จะนำเสนอในตารางที่ 2 โดยใช้ F-การทดสอบอย่างมีนัยสำคัญและการขาดความเหมาะสมของรูปแบบได้รับการประเมิน ตามการวิเคราะห์ความแปรปรวนขาดพอดีไม่ได้อย่างมีนัยสำคัญที่ระดับความเชื่อมั่น 95% F-ค่าของรูปแบบ (13.91) กับ P-value น้อยกว่า 0.0001 ส่อให้เห็นว่ารูปแบบการอย่างมีนัยสำคัญ ค่า P- ขนาดเล็กและค่าสัมประสิทธิ์สูงของความมุ่งมั่น (R2 = 0.8903) แสดงให้เห็นถึงความเหมาะสมของรูปแบบสำหรับการเป็นตัวแทนของความสัมพันธ์ที่แท้จริงระหว่างตัวแปร. ความสำคัญของแต่ละพารามิเตอร์ในรูปแบบที่ถูกตรวจสอบโดยการทดสอบสมมติฐาน ถ้า P-value น้อยกว่าระดับ icance signif-, สมมติฐานถูกปฏิเสธซึ่งหมายความว่าคำที่มีนัยสำคัญ (Lee et al., 2010) บางส่วนของข้อตกลงที่ไม่มีนัยสำคัญของรูปแบบไม่ได้ถูกตัดออกเพื่อรักษารูปแบบลำดับชั้นและได้รับไม่ได้อย่างมีนัยสำคัญการขาดความพอดี ขจัดเงื่อนไขทั้งหมดที่ไม่มีนัยสำคัญทำให้เกิดการที่ปรับ R2 (วัดจากจำนวนของการเปลี่ยนแปลงรอบหมายถึงการอธิบายโดยรูปแบบการปรับจำนวนข้อตกลงในรูปแบบ) ลดลงและการขาดความพอดีเป็นสำคัญ (Chaibakhsh et al., 2010 ) ผลการศึกษาพบว่าปริมาณการตกตะกอนและความเข้มข้นของสีย้อมส่งผลกระทบต่อประสิทธิภาพการกำจัดสีของ basilicum ทุมและสีย้อม centration งเป็นพารามิเตอร์ที่สำคัญที่สุด อย่างไรก็ตามค่า pH (ในช่วงที่เลือก) ไม่ได้เป็นปัจจัยที่สำคัญในประสิทธิภาพในการกำจัดสีของตกตะกอนตามธรรมชาติ พารามิเตอร์ยังไม่มีผลกระทบกับการตอบสนองแบบโต้ตอบ ซึ่งหมายความว่าการ modifica- ของหนึ่งในปัจจัยที่ไม่ได้ส่งผลกระทบต่อปัจจัยอื่น ๆ ในภูมิภาคการทำงาน ค่าสัมประสิทธิ์เชิงลบของปัจจัยส่วนบุคคล, A, B และ C ระบุว่าปัจจัยที่มีผลเสียต่อการตอบสนองและโดยการเพิ่มคำเหล่านี้อายุการกำจัดสีเปอร์เซ็นต์อาจลดลง. รูป 6 แสดงให้เห็นถึงการทดลองเมื่อเทียบกับร้อยละการกำจัดสีคาดการณ์ที่ได้รับจากสมการ (1) การกระจายเชิงเส้นที่บ่งบอกถึงรูปแบบกระชับ พล็อตน่าจะเป็นปกตินอกจากนี้ยังจะนำเสนอในรูป 6. พล็อตที่เหลือแสดงให้เห็นว่าเป็นไปตามการกระจายที่ปกติ สร้างแบบจำลองทางคณิตศาสตร์สามารถนำมาใช้ในการทำนายร้อยละการกำจัดสีอยู่ในช่วงที่กำหนดของตัวแปรหลัก. มันควรจะกล่าวว่าข้อมูลที่ได้รับการลดซีโอดีไม่สามารถติดตั้งได้ดีกับรูปแบบรวมถึงการเชิงเส้นสองปัจจัย, และกำลังสอง คิว ดูเหมือนว่าการใช้การออกแบบการทดลองที่เหมาะสมหรือการใช้เทคนิคการสร้างแบบจำลองเชิงเส้นอื่น ๆ เช่นเครือข่ายประสาทตรรกศาสตร์หรือการรวมกันของวิธีการเหล่านี้อาจจะมีประโยชน์สำหรับจุดมุ่งหมายนี้ (Sanayei et al., 2014)
การแปล กรุณารอสักครู่..
