same order, σz ∝ 1/h. Thus β = 1/(3λp) and the stress increases at the same rate as the radius decreases: h = h0 exp(−t/(3λp)), σz = σ0 exp(t/(3λp)). (318) As shown in figure 98, (318) works reasonably well. The polymer relaxation time was determined by fitting small amplitude oscillatory shear data to a Zimm spectrum [546], and identifying λp with the longest time scale [550]. However to determine the so-called extensional viscosity νe = σz/
˙, the prefactor σ0 in (318) is needed, which according to (317) is determined by the tension T (t)in the thread. To this end one has to understand how a thread, as seen in figure 97, is matched to the drops between which it is strung. As is evident from figure 97, the transition region where the thinning thread is attached to a drop develops into an increasingly sharp corner. Recently [316] it has been shown experimentally and theoretically that the profile in the corner region is self-similar, with a typical size that is set by the thread radius. Using this self-similar structure, and within the confines of the onedimensional model equations (314)–(316), the tension was found to be T = 3γ h/ρ. The extensional viscosity νe = 3λpγ /(ρh) (319) can thus be determined from a measurement of the thread thickness alone. However, the slenderness assumptions underlying the one-dimensional description is no longer valid inside the drop, so the precise value of the prefactor in (319) is expected to be different if the full axisymmetric flow profile is used. Thus, a fully quantitative calculation of the extensional viscosity of a thinning polymeric thread remains an unsolved problem. A particularly simple description of a polymeric thread is achieved for observation over a time short compared with λp, formally derived from (315), (316) in the limit λp → ∞. In particular, one finds [551, 552] that for negligible initial deformation σz − σr = G(1/h2 − h4), where G = νp/λp is the ‘elasto-capillary’ number [533]. In this limit in which there is no polymer relaxation, the fluid behaves like an elastic solid. As a result, a stationary thread thickness is reached, corresponding to a balance of surface tension and elastic stresses [551]. A linear analysis of this stationary state shows that it is stable, with non-dispersive elastic waves running on it. Figure 99 illustrates the effect of flexible polymers on the dripping of a low-viscosity solvent (water), (a) showing the case of pure water for reference. The images in (b) and (c) are split to demonstrate the considerable power of the onedimensional model (314)–(316) in reproducing experimental data. In this comparison, only the polymer timescale λp was used as an adjustable parameter [542]. If polymers are added to the water, a thin thread forms between the main drop and the nozzle, analogous to figure 97. However, if the nozzle diameter is sufficiently large, a smaller ‘satellite’ bead is trapped in the middle of the thread. In particular, if the polymer timescale λp is greater than the Rayleigh time (2), polymer stretching sets in right after the initial linear disturbance growth on the fluid neck, resulting in a symmetric profile, cf figure 99(c). In this case, a uniform thread is formed. In the opposite case, polymer stretching is negligible at first, Figure 99. (a) A drop of water falling from a faucet, h0 = 3 mm. (b), (c): closeup of the pinch region, with 100 ppm of PEO solution added. (left: numerical simulations, right: experiment) (b): h0 = 3 mm, tc − t = 6, 2, 0, −3, −5 ms; (c): h0 = 0.4 mm tc − t = 1, 0 ms. Model parameters: ηp = 3.7 × 10−4 Pa s, λp = 1.2 × 10−2 s, b = 2.5 × 104, ηs = 1 × 10−3 Pa s, γ = 6 × 10−2 N m−1. and a highly asymmetric Euler solution (212) develops [521], see also figure 14. This normally leads to the formation of a satellite drop, but since polymer stretching eventually becomes important, this satellite drop is connected by thin threads cf figure 99(b). In [521], the thinning rate at the abrupt transition between the Euler solution and a thread was proposed as a measure for the polymer time scale. This rate was found to be similar to, yet significantly different from the subsequent thinning rate of the thread. Indeed, while the FENE-P model (314)–(316) is successful in describing the early stages of pinching shown in figure 99, it fails to satisfactorily describe the subsequent thinning of the thread. In [541] a strong dependence of β on the polymer concentration c was found, which persists to concentrations far below overlap concentration c∗, and which is attributed to interactions between polymers. Namely, polymers become highly deformed in the early stages of pinching, which greatly increases their interaction radius. However, two observations made in [542] point to even more fundamental problems of classical descriptions like FENE-P. Firstly, in [542] λp was fitted to match the transition from the Euler solution to a polymeric thread, but the same value does not predict the correct thinning rate of the thread. Thus more than one time scale seems to be necessary. Even more worryingly, the value of β was also found to depend on the radius of the capillary, so β cannot be an intrinsic property of the model. In [542] it is argued that for small solvent viscosities, polymer deformation is already large at the onset of thread formation, so finite size effects may play a significant role. Still another phenomenon occurs for somewhat more concentrated (above c∗) aqueous solutions, as first described 69
คำสั่งเดียวกันσ Z ∝ 1 / h ดังนั้นบีตา = 1 / ( 3 λ P ) และความเครียดที่เพิ่มขึ้นในอัตราเดียวกับรัศมีลดลง : H0 H = exp ( − T / ( 3 λ P ) ) σ Z = σ 0 EXP ( T / ( 3 λ P ) ) ( 318 ) ดังแสดงในรูปที่ 98 ( 318 ) งานพอสมควรนะครับ พอลิเมอร์ผ่อนคลายเวลาถูกกำหนดโดยการปรับเล็กขนาดลังเลเฉือนข้อมูลไปยัง zimm สเปกตรัม [ ผม ] และระบุλ P กับมาตราส่วนเวลาที่ยาวที่สุด [ 550 ]อย่างไรก็ตามการตรวจสอบที่เรียกว่าความหนืดแบบขยายν E = σ Z /
˙ , prefactor σ 0 ( 318 ) เป็นสิ่งจำเป็น ซึ่งตาม ( 317 ) จะถูกกำหนดโดยแรง T ( t ) ในหัวข้อ เหตุนี้เอง จะเข้าใจหัวข้อ ตามที่เห็นในรูปที่ 3 คือการจับคู่กับหยดระหว่างที่มันหงุดหงิด . เท่าที่เห็นจากรูปที่ 97 ,การเปลี่ยนแปลงพื้นที่ ที่บางกระทู้ที่แนบมากับหยดพัฒนากลายเป็นมุมที่คมชัดยิ่งขึ้น เมื่อเร็ว ๆนี้ [ 316 ] มันมีการแสดงผลและตามหลักวิชาที่โปรไฟล์ในมุมเขตตัวเองเหมือนกัน ที่มีขนาดทั่วไปที่กำหนดโดยด้ายรัศมี ใช้ตัวที่คล้ายกันโครงสร้างและภายในขอบเขตของสมการ onedimensional ( 314 ) – ( 316 ) ความตึงเครียด คือ T = 3 γ H / ρ . ส่วนความหนืดแบบขยายν E = 3 λ P γ / ( ρ H ) ( 319 ) จึงได้รับการพิจารณาจากการวัดความหนาด้ายคนเดียว อย่างไรก็ตาม ความชะลูดข้อสมมติในรายละเอียดมิติที่ไม่ถูกต้องในการปล่อยดังนั้น ชัดเจนค่าของ prefactor ( 319 ) คาดว่าจะแตกต่างกัน ถ้าโปรไฟล์ของทางนั้นเต็มใช้ ดังนั้น การคำนวณปริมาณเต็มที่ของความหนืดของพอลิเมอร์แบบขยายการด้าย ยังคงเป็นปัญหาที่ยังไม่แก้ รายละเอียดโดยเฉพาะอย่างยิ่งง่ายของหัวข้อการได้สังเกตการณ์ในช่วงเวลาสั้นๆ เมื่อเทียบกับλ Pอย่างเป็นทางการมาจาก ( 315 ) ( 316 ) ในขอบเขตλ P → keyboard - key - name ∞ . โดยเฉพาะอย่างยิ่งหนึ่งพบ [ 551 552 ] ที่ไม่มีการเริ่มต้นσ Z σ R = G − ( − 1 / H2 H4 ) โดยที่ G = ν P / λ P คือ ' ' หมายเลข [ 533 Elasto ฝอย ] ในนี้ที่ไม่มีขีด จำกัด ของเหลวโพลีเมอร์ ผ่อนคลาย ทำตัวอย่างยืดหยุ่นแข็ง เป็นผลให้มีความหนาถึงด้ายเครื่องเขียน ,ที่สอดคล้องกับสมดุลของแรงตึงผิวและแรงยืดหยุ่น [ 551 ] การวิเคราะห์เชิงเส้นของรัฐนี้นิ่ง แสดงว่าเป็นมั่นคง ไม่กระจายตัวคลื่นยืดหยุ่น วิ่งบน รูปที่ 9 แสดงผลของพอลิเมอร์ที่ยืดหยุ่นในการหยดของตัวทำละลาย มีความหนืดต่ำ ( น้ำ ) , ( ก ) แสดงกรณีของน้ำบริสุทธิ์สำหรับการอ้างอิงภาพใน ( ข ) และ ( ค ) จะแยกแสดงให้เห็นถึงพลังมากของรูปแบบ onedimensional ( 314 ) – ( 316 ) ในการทำซ้ำข้อมูลจากการทดลอง ในการเปรียบเทียบนี้เพียงพอลิเมอร์เวลาλ P ถูกใช้เป็นพารามิเตอร์ปรับ [ 542 ] ถ้าเป็นพอลิเมอร์ที่มีการเพิ่มน้ำ บางหัวข้อรูปแบบระหว่างวางหลักและหัวคล้ายกับรูป 97 . อย่างไรก็ตามถ้าหัวฉีดขนาดเส้นผ่านศูนย์กลางขนาดใหญ่เพียงพอ , ลูกปัดขนาดเล็ก ' ดาวเทียม ' ติดอยู่ในกลางของด้าย โดยเฉพาะ ถ้าใช้เวลาλ P มากกว่าค่า Rayleigh เวลา ( 2 ) โพลิเมอร์ยืดชุดขวาหลังจากที่เริ่มต้นการรบกวนการเจริญเติบโตเชิงเส้นบนคอของของไหลที่เกิดในโปรไฟล์ของสมมาตร , CF รูป 99 ( C ) ในกรณีนี้ ด้าย เครื่องแบบนี้จะเกิดขึ้นในกรณีตรงกันข้าม โพลิเมอร์ ยืดได้เล็กน้อย ตอนแรกคิด 99 ( ก ) หยดน้ำหล่นจากก๊อกน้ำ , H0 = 3 มิลลิเมตร ( b ) , ( c ) : closeup ของหยิกเขต ด้วยโซลูชั่นของ PEO 100 ppm เพิ่ม ( ซ้าย : การจำลองเชิงตัวเลข ขวา : ทดลอง ) ( B ) : H0 = 3 มม. , TC − t = 6 , 2 , 0 , − 3 , − 5 ms ; ( C ) : H0 = 0.4 มม. TC − t = 1 , 0 คุณพารามิเตอร์ : η P = 3.7 × 10 − 4 ป่า s λ P = 12 × 10 − 2 S , B = 2.5 × 104 , η S = 1 × 10 − 3 ป่า , γ = 6 × 10 − 2 n m − 1 และโซลูชั่นออยเลอร์สูงแบบอสมมาตร ( 212 ) พัฒนา [ 521 ] , ดู รูปที่ 14 นี้โดยปกติจะนำไปสู่การก่อตัวของดาวเทียมลดลง แต่เนื่องจากโพลิเมอร์ยืดในที่สุดจะกลายเป็นสำคัญนี้วางดาวเทียมเชื่อมต่อ โดยบางกระทู้ CF รูป 99 ( B ) ใน [ 521 ]บางอัตราการเปลี่ยนแปลงกะทันหันระหว่างทั้งโซลูชั่นและหัวข้อที่เสนอเป็นมาตรการสำหรับพอลิเมอร์ระดับเวลา ราคานี้ถูกพบว่าเป็นเหมือนกัน แต่แตกต่างจากภายหลังการเท่ากันของด้าย แน่นอน ขณะที่ fene-p โมเดล ( 314 ) – ( 316 ) ประสบความสำเร็จในการอธิบายขั้นตอนแรกของหยิก แสดงในรูปที่ 99 ,มันล้มเหลวที่จะสามารถอธิบายตามมา thinning ของด้าย ใน [ 541 ] แข็งแรงพึ่งพาของบีตาในพอลิเมอร์ความเข้มข้น C พบซึ่งยังคงอยู่ต่ำกว่าปริมาณความเข้มข้น C ∗ซ้อนกัน ซึ่งเกิดจากการปฏิสัมพันธ์ระหว่างพอลิเมอร์ คือพอลิเมอร์กลายเป็นสูงผิดปกติในช่วงแรกของการจับซึ่งการเพิ่มขึ้นอย่างมากของรัศมี อย่างไรก็ตาม สองสังเกตได้ใน [ 542 ] จุดแม้เพิ่มเติมพื้นฐานปัญหาคำอธิบายคลาสสิกเหมือน fene-p. ประการแรกใน [ 542 ] λ P ถูกติดตั้งเพื่อให้ตรงกับการเปลี่ยนแปลงจากออยเลอร์แก้ด้ายซ้อม แต่ค่าเดียวกันไม่ได้ทำนายถูกต้องการเท่ากันของด้ายดังนั้นมากกว่าหนึ่งระดับเวลาที่ดูเหมือนว่าจะเป็น ยิ่ง worryingly , ค่าของบีตายังพบว่าขึ้นอยู่กับรัศมีของเส้นเลือดฝอย ดังนั้นบีตาไม่สามารถคุณสมบัติที่แท้จริงของนางแบบ ใน [ 542 ] จะแย้งว่าขนาดเล็กละลายความหนืด ของพอลิเมอร์ได้ขนาดใหญ่ที่เริ่มก่อตัว ด้าย ดังนั้นผลขนาดจำกัดอาจมีบทบาทสำคัญอีกปรากฏการณ์ที่เกิดขึ้นสำหรับค่อนข้างเข้มข้นกว่า ( เหนือ C ∗ ) สารละลาย เป็นครั้งแรกที่อธิบาย 69
การแปล กรุณารอสักครู่..
