This paper investigates the essential conditions to improve the accuracy of a resistance spot welding computational study of advanced zinc coated steel sheets using rounded tip electrode. An experimental analysis is performed to highlight the required considerations for a suitable simulation. A sequential Electrical-Thermal-Metallurgical and Mechanical (ETMM) finite element analysis with appropriate precautions of the contact conditions enables to accurately simulate the nugget development during the welding. A critical smooth evolution of the contact radius is required. A fine meshing with an interfacial mesh size of at least 0.05 × 10−3 m combined with a coupling time step of 0.0025 s between the electrical-thermal-metallurgical and the mechanical analysis allows a regular incrementation of the contact radius, without burdening the time computing. Accurate values of the contact resistance depending on the interfacial pressure and temperature are essential for a good simulation of the nugget size. The ETMM calculation is successfully extended to the simulation of the welding of a typical two sheets assembly.