Apoptosis, a morphologically and mechanistically distinct form of programmed cell death, is essential for normal animal development and tissue homeostasis. The key executioners in apoptosis are caspases (cysteine aspartases), a family of proteases that have been conserved through much of animal evolution. Caspases are present as inactive precursor proteins in virtually all cells and are specifically activated by proteolytic cleavage. Their activation is regulated by both activators, which promote the conversion of the weakly active precursor caspase to the mature protease, and inhibitors, which prevent unwanted caspase activity and cell death [1]. One important family of caspase inhibitors comprises the inhibitor of apoptosis proteins (IAPs), which can directly bind to and inhibit caspases. In Drosophila, Diap1 is required to prevent inappropriate caspase activation and ubiquitous apoptosis. In response to death-inducing stimuli, antagonists of IAPs such as Reaper, Hid and Grim are produced to inactivate Diap1 and thereby remove the ‘brakes on death’. Although caspases are often viewed as general destroyers of cellular components during apoptosis, there are now many studies showing that they can act with a great degree of local specificity to remove unwanted cellular compartments [2-4].