High bandwidth data transfer is critical in applications where large quantities of information are being transmitted. This is of particular interest to the Ocean Science Community, which relies on collecting data from sensors on the ocean floor. Multiple approaches for data transfer are illustrated, and the strengths and weaknesses of each are highlighted in this paper. Fiber Optic technology has been widely adopted in subsea communications due to the inherent reliability and the passive nature of fiber optics. A brief history of subsea fiber optic interconnects is developed, with an accent on projects in the Oceanographic arena. An overview of the reliability of fiber optic wet-mate connectors in subsea is reported, augmented with an emphasis on case histories for subsea fields in Oil & Gas markets where the largest quantities of fiber optic connectors have been deployed. Advancements for subsea connectivity are discussed, specifically related to a novel approach utilizing existing technology. This approach utilizes standard electrical wet-mate connectors on either end. Marinized media converters are contained within the back shells of each electrical connector which convert the Ethernet signal from electrical to optical. The optical signal can then be transmitted over distances far exceeding standard subsea electrical Ethernet capabilities. In this way, optical Ethernet performance can be achieved with standard electrical Ethernet hardware interfaces extending the step out distance from 100 m (limit of standard electrical Ethernet subsea jumpers) to up to 10 km.