otential theory
From Wikipedia, the free encyclopedia
In mathematics and mathematical physics, potential theory is the study of harmonic functions.
The term "potential theory" was coined in 19th-century physics, when it was realized that the fundamental forces of nature could be modeled using potentials which satisfy Laplace's equation. Although more accurate theories - for example classical Electrostatics and Newtonian gravity - were developed later, the name "potential theory" remained.
There is considerable overlap between potential theory and the theory of the Laplace equation. To the extent that it is possible to draw a distinction between these two fields, the difference is more one of emphasis than subject matter and rests on the following distinction: potential theory focuses on the properties of the functions as opposed to the properties of the equation. For example, a result about the singularities of harmonic functions would be said to belong to potential theory whilst a result on how the solution depends on the boundary data would be said to belong to the theory of the Laplace equation. Of course, this is not a hard and fast distinction, and in practice there is considerable overlap between the two fields, with methods and results from one being used in the other.
Modern potential theory is also intimately connected with probability and the theory of Markov chains. In the continuous case, this is closely related to analytic theory. In the finite state space case, this connection can be introduced by introducing an electrical network on the state space, with resistance between points inversely proportional to transition probabilities and densities proportional to potentials. Even in the finite case, the analogue I-K of the Laplacian in potential theory has its own maximum principle, uniqueness principle, balance principle, and others.
Contents [hide]
1 Symmetry
2 Two dimensions
3 Local behavior
4 Inequalities
5 Spaces of harmonic functions
6 See also
7 References
Symmetry[edit]
A useful starting point and organizing principle in the study of harmonic functions is a consideration of the symmetries of the Laplace equation. Although it is not a symmetry in the usual sense of the term, we can start with the observation that the Laplace equation is linear. This means that the fundamental object of study in potential theory is a linear space of functions. This observation will prove especially important when we consider function space approaches to the subject in a later section.
As for symmetry in the usual sense of the term, we may start with the theorem that the symmetries of the n-dimensional Laplace equation are exactly the conformal symmetries of the n-dimensional Euclidean space. This fact has several implications. First of all, one can consider harmonic functions which transform under irreducible representations of the conformal group or of its subgroups (such as the group of rotations or translations). Proceeding in this fashion, one systematically obtains the solutions of the Laplace equation which arise from separation of variables such as spherical harmonic solutions and Fourier series. By taking linear superpositions of these solutions, one can produce large classes of harmonic functions which can be shown to be dense in the space of all harmonic functions under suitable topologies.
Second, one can use conformal symmetry to understand such classical tricks and techniques for generating harmonic functions as the Kelvin transform and the method of images.
Third, one can use conformal transforms to map harmonic functions in one domain to harmonic functions in another domain. The most common instance of such a construction is to relate harmonic functions on a disk to harmonic functions on a half-plane.
Fourth, one can use conformal symmetry to extend harmonic functions to harmonic functions on conformally flat Riemannian manifolds. Perhaps the simplest such extension is to consider a harmonic function defined on the whole of Rn (with the possible exception of a discrete set of singular points) as a harmonic function on the n-dimensional sphere. More complicated situations can also happen. For instance, one can obtain a higher-dimensional analog of Riemann surface theory by expressing a multi-valued harmonic function as a single-valued function on a branched cover of Rn or one can regard harmonic functions which are invariant under a discrete subgroup of the conformal group as functions on a multiply connected manifold or orbifold.
Two dimensions[edit]
From the fact that the group of conformal transforms is infinite-dimensional in two dimensions and finite-dimensional for more than two dimensions, one can surmise that potential theory in two dimensions is different from potential theory in other dimensions. This is correct and, in fact, when one realizes that any two-dimensional harmonic function is the real part of a complex analytic function, one sees that the subject of two-dimensional potential theory is substantially the same as that of complex analysis. For this reason, when speaking of potential theory, one focuses attention on theorems which hold in three or more dimensions. In this connection, a surprising fact is that many results and concepts originally discovered in complex analysis (such as Schwarz's theorem, Morera's theorem, the Weierstrass-Casorati theorem, Laurent series, and the classification of singularities as removable, poles and essential singularities) generalize to results on harmonic functions in any dimension. By considering which theorems of complex analysis are special cases of theorems of potential theory in any dimension, one can obtain a feel for exactly what is special about complex analysis in two dimensions and what is simply the two-dimensional instance of more general results.
Local behavior[edit]
An important topic in potential theory is the study of the local behavior of harmonic functions. Perhaps the most fundamental theorem about local behavior is the regularity theorem for Laplace's equation, which states that harmonic functions are analytic. There are results which describe the local structure of level sets of harmonic functions. There is Bôcher's theorem, which characterizes the behavior of isolated singularities of positive harmonic functions. As alluded to in the last section, one can classify the isolated singularities of harmonic functions as removable singularities, poles, and essential singularities.
Inequalities[edit]
A fruitful approach to the study of harmonic functions is the consideration of inequalities they satisfy. Perhaps the most basic such inequality, from which most other inequalities may be derived, is the maximum principle. Another important result is Liouville's theorem, which states the only bounded harmonic functions defined on the whole of Rn are, in fact, constant functions. In addition to these basic inequalities, one has Harnack's inequality, which states that positive harmonic functions on bounded domains are roughly constant.
One important use of these inequalities is to prove convergence of families of harmonic functions or sub-harmonic functions, see Harnack's theorem. These convergence theorems can often be used to prove existence of harmonic functions having particular properties.
Spaces of harmonic functions[edit]
Since the Laplace equation is linear, the set of harmonic functions defined on a given domain is, in fact, a vector space. By defining suitable norms and/or inner products, one can exhibit sets of harmonic functions which form Hilbert or Banach spaces. In this fashion, one obtains such spaces as the Hardy space, Bloch space, and Bergman space.
otential ทฤษฎี
จากวิกิพีเดีย สารานุกรมเสรี
ในวิชาคณิตศาสตร์และฟิสิกส์เชิงคณิตศาสตร์ ทฤษฎีศักยภาพการศึกษาการทำงานที่ประสานกัน .
คำว่า " ทฤษฎี " ที่อาจเกิดขึ้นได้รับการประกาศเกียรติคุณในฟิสิกส์ในศตวรรษที่ 19 เมื่อมันรู้ว่าพลังพื้นฐานของธรรมชาติอาจเป็นแบบใช้ศักยภาพซึ่งเป็นไปตามสมการลาปลาซ .แม้ว่าทฤษฎี - ถูกต้องมากขึ้นตัวอย่างเช่นคลาสสิกและไฟฟ้าสถิตนิวตันแรงโน้มถ่วง - ถูกพัฒนาต่อมาชื่อ " ศักยภาพทฤษฎี " ยังคง
มันทับซ้อนกันมากระหว่างทฤษฎีศักยภาพและทฤษฎีของลาปลาซสมการ ในขอบเขตที่เป็นไปได้ในการวาดความแตกต่างระหว่างทั้งสองเขตความแตกต่างเป็นหนึ่งในความสำคัญมากกว่าเนื้อหาขึ้นอยู่กับความแตกต่างดังต่อไปนี้ : ทฤษฎีศักยภาพเน้นคุณสมบัติของฟังก์ชั่นเมื่อเทียบกับคุณสมบัติของสมการ ตัวอย่างเช่นผลเกี่ยวกับซิงกูลาริตี้ของการทำงานที่ประสานกันจะบอกว่าเป็นของทฤษฎีศักยภาพในขณะที่ผลเกี่ยวกับวิธีการแก้ปัญหาขึ้นอยู่กับข้อมูลขอบเขตจะบอกว่าอยู่ในทฤษฎีของลาปลาซสมการ ของหลักสูตรนี้ไม่แตกต่างอย่างหนักและรวดเร็วในการปฏิบัติ มีเหลื่อมกันมากระหว่างสองเขตด้วยวิธีการและผลลัพธ์จากการใช้ในอื่น ๆ .
ทันสมัยศักยภาพทฤษฎียังเกี่ยวกับความน่าจะเป็นและทฤษฎีของมาร์คอฟโซ่ ในคดีต่อไป ซึ่งจะเกี่ยวข้องกับทฤษฎีวิเคราะห์ ในวิธีปริภูมิสถานะคดี การเชื่อมต่อนี้สามารถแนะนำโดยอาศัยเครือข่ายไฟฟ้าขึ้นอยู่กับสภาพพื้นที่ที่มีความต้านทานระหว่างจุดแปรผกผันกับการเปลี่ยนความหนาแน่นความน่าจะเป็นและตามศักยภาพ แม้ในกรณีจำกัด , i-k อนาล็อกของ Laplacian ในทฤษฎีศักยภาพสูงสุดของตนเอง มีหลักการ หลักการ หลักการ ความสมดุล และผู้อื่นไม่ .
เนื้อหา [ ซ่อน ]
1 สมมาตร
2
3
2 มิติท้องถิ่นพฤติกรรม 4 อสมการ
5 เป็นของฮาร์มอนิกฟังก์ชัน
6 ดู
7 อ้างอิงสมมาตร [ แก้ไข ]
เป็นจุดเริ่มต้นและหลักการในการจัด การศึกษา การทำงานที่ประสานกันเป็นปัจจัยของสมมาตรของลาปลาซสมการ ถึงแม้ว่ามันไม่สมมาตรในความหมายเดิมของคำที่เราสามารถเริ่มต้นด้วยการสังเกตว่าลาปลาซสมการเชิงเส้นหมายความว่าวัตถุพื้นฐานของการศึกษาในทฤษฎีศักยภาพคือปริภูมิเชิงเส้นของฟังก์ชัน การสังเกตนี้จะพิสูจน์ที่สำคัญโดยเฉพาะอย่างยิ่งเมื่อเราพิจารณาพื้นที่อเนกประสงค์แนวเรื่องในส่วนทีหลัง
สำหรับสมมาตรในความหมายเดิมของคำเราอาจเริ่มต้นด้วยทฤษฎีบทที่สมมาตรของสมการลาปลาซ n-dimensional ตรงมาตราส่วนสมมาตรของพื้นที่ใช้ n-dimensional . ข้อเท็จจริงนี้มีผลกระทบหลาย แรกของทั้งหมด , หนึ่งสามารถพิจารณาฟังก์ชันฮาร์มอนิก ซึ่งเป็นตัวแทนของกลุ่มแปลงภายใต้ลดมาตราส่วนหรือของกลุ่ม ( เช่น กลุ่มของการหมุนหรือการแปล )ดำเนินการในแฟชั่นนี้ หนึ่งสามารถได้รับผลเฉลยของสมการลาปลาซ ซึ่งเกิดขึ้นจากการแยกตัวแปร เช่น โซลูชั่นและ Bessel Fourier Series โดยการเชิงเส้น superpositions ของโซลูชั่นเหล่านี้หนึ่งสามารถผลิตชั้นเรียนขนาดใหญ่ของการทำงานที่ประสานกันซึ่งสามารถแสดงเป็นหนาแน่นในพื้นที่ของทุกฟังก์ชันฮาร์มอนิก ภายใต้โครงสร้างที่เหมาะสม .
ที่สอง , หนึ่งสามารถใช้มาตราส่วนสมมาตรที่จะเข้าใจเคล็ดลับและเทคนิคสำหรับการสร้างคลาสสิก เช่น การทำงานที่ประสานกันเป็นเคลวินแปลงและวิธีการของภาพ
สาม หนึ่งสามารถใช้มาตราส่วนแผนที่แปลงเพื่อการทำงานที่ประสานกันในการทำงานที่ประสานกันของโดเมนโดเมนหนึ่งไปยังอีกตัวอย่างที่พบมากที่สุดเช่นการก่อสร้างที่เกี่ยวข้องกับการทำงานที่ประสานกันบนดิสก์เพื่อการทำงานที่ประสานกันอยู่บนเครื่องบินครึ่ง
4 , หนึ่งสามารถใช้มาตราส่วนสมมาตร เพื่อขยายการทำงานที่ประสานกันเพื่อการทำงานที่ประสานกันอยู่บน conformally แบนแบบรีมัน manifolds .บางทีเรื่องที่ง่ายที่สุดคือการพิจารณาฟังก์ชันฮาร์มอนิกไว้บนทั้งหมดของ Rn ( กับข้อยกเว้นที่เป็นไปได้ของชุดต่อเนื่องของจุดเอกพจน์ ) เป็นฟังก์ชันฮาร์มอนิกส์บนทรงกลม n-dimensional . สถานการณ์ที่ซับซ้อนมากขึ้น นอกจากนี้ยังสามารถเกิดขึ้นได้ สำหรับอินสแตนซ์หนึ่งสามารถได้รับขนาดสูงอนาล็อกของทฤษฎีผิวรีมันน์โดยการแสดงหลายฟังก์ชันค่าฮาร์มอนิกเป็นฟังก์ชันค่าเดียวในแขนงครอบคลุมของ RN หรือหนึ่งสามารถพิจารณาการทำงานที่ประสานกันซึ่งเป็นค่าคงที่ในกลุ่มย่อยที่ไม่ต่อเนื่องของกลุ่มมาตราส่วนเป็นฟังก์ชันบนคูณอเนก หรือเชื่อมต่อ orbifold
[ แก้ไข ]
2 มิติจากการที่กลุ่มของมาตราส่วนแปลงเป็นอนันต์มิติสองมิติมีมิติและมากกว่าสองมิติ หนึ่งสามารถสันนิษฐานว่าทฤษฎีศักยภาพใน 2 มิติที่แตกต่างจากทฤษฎีศักยภาพในมิติอื่น ๆ นี้จะถูกต้อง และในความเป็นจริง เมื่อตระหนักว่าฟังก์ชันใด ๆที่ประสานกันสองมิติเป็นส่วนที่แท้จริงของฟังก์ชันวิเคราะห์เชิงซ้อน ,หนึ่งเห็นว่า เรื่องของทฤษฎีศักยภาพสองมิติเป็นอย่างมากเช่นเดียวกับการวิเคราะห์เชิงซ้อน ด้วยเหตุผลนี้ เมื่อพูดถึงทฤษฎีศักยภาพหนึ่งเน้นความสนใจในทฤษฎีบทที่ค้างในสามหรือมากกว่าขนาด ในการเชื่อมต่อนี้ ข้อเท็จจริงที่น่าประหลาดใจก็คือว่าหลายผลลัพธ์ และแนวคิดการค้นพบครั้งแรกในการวิเคราะห์เชิงซ้อน ( เช่น ทฤษฎีบท ชวาร์ซ ,ทฤษฎีบท morera , ไวแยร์สตราสส์ casorati ทฤษฎีบท , ลอเรนท์ชุดและการจำแนกเอกเหมือนถอดเสาและจำเป็นเอกพจน์ ) อนุมานเพื่อผลลัพธ์ในการทำงานที่ประสานกันในมิติใด ๆ . โดยพิจารณาที่ทฤษฎีบทของการวิเคราะห์ที่ซับซ้อนเป็นกรณีพิเศษของทฤษฎีบทของทฤษฎีศักยภาพในทุกมิติหนึ่งสามารถได้รับความรู้สึกสำหรับสิ่งที่พิเศษเกี่ยวกับการวิเคราะห์เชิงซ้อนแบบ 2 มิติ และสิ่งที่เป็นเพียงตัวอย่างสองมิติของผลการค้นหาทั่วไปมากขึ้น พฤติกรรมท้องถิ่น [
]
แก้ไขหัวข้อสำคัญในทฤษฎีศักยภาพคือการศึกษาพฤติกรรมภายในของฟังก์ชันฮาร์มอนิ บางทีพื้นฐานที่สุดทฤษฎีบทเกี่ยวกับพฤติกรรมท้องถิ่นเป็นทฤษฎีบทความสม่ำเสมอสำหรับสมการลาปลาสได้ซึ่งระบุว่า การทำงานที่ประสานกันเป็นวิเคราะห์ ซึ่งมีการอธิบายโครงสร้างท้องถิ่นระดับชุดของฟังก์ชันฮาร์มอนิ มีทฤษฎีบทของ B เป็นการแชร์ ซึ่ง characterizes พฤติกรรมซิงกูลาริตี้แยกการทำงานที่ประสานกันเป็นบวก เป็น alluded เพื่อในส่วนสุดท้าย หนึ่งสามารถจำแนกแยกเอกพจน์ของการทำงานที่ประสานกันอย่างเอกที่ถอดออกได้หมุนและที่สำคัญเอก
[ ]
ฉบับแก้ไขมีผลวิธีการศึกษาของฮาร์มอนิกฟังก์ชันคือการพิจารณาอสมการที่พวกเขาพอใจ บางทีความไม่เท่าเทียมกัน เช่น พื้นฐานที่สุด ซึ่งคนอื่นมากที่สุดอาจจะได้รับเป็นหลักสูงสุด อื่นที่สำคัญ ผลคือ liouville ทฤษฎีบทของซึ่งระบุเพียงจำกัดฮาร์ฟังก์ชันที่นิยามบนทั้งหมดของ Rn เป็น , ในความเป็นจริง , คงที่ฟังก์ชัน นอกจากอสมการพื้นฐานเหล่านี้ มี harnack ความไม่เท่าเทียมกัน ซึ่งระบุว่า การทำงานที่ประสานกันบวกจำกัดโดเมนมีประมาณคงที่
สำคัญใช้อสมการนี้คือการพิสูจน์การลู่เข้าของครอบครัวของฟังก์ชันย่อยหรือฟังก์ชันฮาร์มอนิ ,ดู harnack ทฤษฎีบทของ ทฤษฎีบทการลู่เข้าเหล่านี้มักจะสามารถใช้เพื่อพิสูจน์การมีอยู่ของฮาร์โมนิคฟังก์ชันที่มีคุณสมบัติเฉพาะ
เป็นของฮาร์มอนิกฟังก์ชัน [ แก้ไข ]
ตั้งแต่ลาปลาซสมการเชิงเส้น , ชุดของฮาร์มอนิกฟังก์ชันที่นิยามบนระบุโดเมนคือ , ในความเป็นจริง , เวกเตอร์พื้นที่ โดยกำหนดเกณฑ์ที่เหมาะสมและ / หรือภายในผลิตภัณฑ์หนึ่งสามารถแสดงชุดรูปแบบฮาร์มอนิกหน้าที่ที่แท้จริง หรือสำรวจพื้นที่ ในแฟชั่นนี้ คนหนึ่งได้ เช่น เป็นเหมือนพื้นที่ ฮาร์ดี้ บล๊อคพื้นที่และยังพื้นที่
การแปล กรุณารอสักครู่..
