13.1 What are some of the reasons why plastic shaping processes are important?
Answer. The reasons include (1) many of the processes are net shape processes; (2) in general, less
energy is employed than in metalworking processes; (3) lower temperatures are required to process
plastics than metals or ceramics; (4) there is great flexibility in geometry; and (5) painting and other
finishing processes are generally not required.
13.2 Identify the main categories of plastics shaping processes, as classified by the resulting product
geometry.
Answer. The categories are (1) extrusion, (2) molding, (3) forming of continuous sheets and films,
(4) fibers, (5) foamed products, and (6) discrete formed sheets and films.
13.3 Viscosity is an important property of a polymer melt in plastics shaping processes. Upon what
parameters does viscosity depend?
Answer. Viscosity of a polymer melt depends on (1) temperature and (2) shear rate. Also, (3) the
molecular weight of the polymer affects viscosity.
13.4 How does the viscosity of a polymer melt differ from most fluids that are Newtonian.
Answer. A polymer melt exhibits pseudoplasticity, which means that its value decreases with
increasing shear rate.
13.5 What does viscoelasticity mean, when applied to a polymer melt?
Answer. Viscoelasticity is a combination of viscous and elastic properties which cause the melt to
exhibit memory - the tendency to return to its previous shape, as exhibited by die swell in extrusion.
13.6 Define die swell in extrusion.
Answer. Die swell is the tendency of the extrudate to expand in cross-sectional dimensions
immediately on exiting the die orifice. It results from the viscoelastic properties of the polymer melt.
13.7 Briefly describe the plastic extrusion process.
Answer. In plastic extrusion, a polymer melt is compressed to flow through a die orifice and thus the
continuous length of the plastic assumes a cross-sectional shape that is approximately the same as
that of the orifice.
13.8 The barrel and screw of an extruder are generally divided into three sections; identify the sections.
Answer. The sections are (1) the feed section, in which the feed stock is fed from the hopper and
heated; (2) the compression section, in which the polymer changes to a viscous fluid; and (3) the
metering section, in which pressure is developed to pump the plastic through the die orifice.
13.9 What are the functions of the screen pack and breaker plate at the die end of the extruder barrel?
Answer. The functions are to (1) filter dirt and lumps, (2) build pressure, (3) straighten the flow and
remove memory of the polymer melt.
13.10 What are the various forms of extruded shapes and corresponding dies?
Answer. The shapes are (1) solid profiles, such as rounds and L-shapes; (2) hollow profiles, such as
tubes; (3) wire and cable coating; (4) sheet and film; and (5) filaments (continuous fibers).
13.1 What are some of the reasons why plastic shaping processes are important?Answer. The reasons include (1) many of the processes are net shape processes; (2) in general, lessenergy is employed than in metalworking processes; (3) lower temperatures are required to processplastics than metals or ceramics; (4) there is great flexibility in geometry; and (5) painting and otherfinishing processes are generally not required.13.2 Identify the main categories of plastics shaping processes, as classified by the resulting productgeometry.Answer. The categories are (1) extrusion, (2) molding, (3) forming of continuous sheets and films,(4) fibers, (5) foamed products, and (6) discrete formed sheets and films.13.3 Viscosity is an important property of a polymer melt in plastics shaping processes. Upon whatparameters does viscosity depend?Answer. Viscosity of a polymer melt depends on (1) temperature and (2) shear rate. Also, (3) themolecular weight of the polymer affects viscosity.13.4 How does the viscosity of a polymer melt differ from most fluids that are Newtonian.Answer. A polymer melt exhibits pseudoplasticity, which means that its value decreases withincreasing shear rate.13.5 What does viscoelasticity mean, when applied to a polymer melt?Answer. Viscoelasticity is a combination of viscous and elastic properties which cause the melt toexhibit memory - the tendency to return to its previous shape, as exhibited by die swell in extrusion.13.6 Define die swell in extrusion.
Answer. Die swell is the tendency of the extrudate to expand in cross-sectional dimensions
immediately on exiting the die orifice. It results from the viscoelastic properties of the polymer melt.
13.7 Briefly describe the plastic extrusion process.
Answer. In plastic extrusion, a polymer melt is compressed to flow through a die orifice and thus the
continuous length of the plastic assumes a cross-sectional shape that is approximately the same as
that of the orifice.
13.8 The barrel and screw of an extruder are generally divided into three sections; identify the sections.
Answer. The sections are (1) the feed section, in which the feed stock is fed from the hopper and
heated; (2) the compression section, in which the polymer changes to a viscous fluid; and (3) the
metering section, in which pressure is developed to pump the plastic through the die orifice.
13.9 What are the functions of the screen pack and breaker plate at the die end of the extruder barrel?
Answer. The functions are to (1) filter dirt and lumps, (2) build pressure, (3) straighten the flow and
remove memory of the polymer melt.
13.10 What are the various forms of extruded shapes and corresponding dies?
Answer. The shapes are (1) solid profiles, such as rounds and L-shapes; (2) hollow profiles, such as
tubes; (3) wire and cable coating; (4) sheet and film; and (5) filaments (continuous fibers).
การแปล กรุณารอสักครู่..
