GPS, in full Global Positioning System,
Navstar Global Positioning System: satellite [Credit: Courtesy of the Lockheed Martin Corporation]space-based radio-navigation system that broadcasts highly accurate navigation pulses to users on or near Earth. In the United States’ Navstar GPS, 24 main satellites in 6 orbits circle Earth every 12 hours. In addition, Russia maintains a constellation called GLONASS (Global Navigation Satellite System), and in 2007 the European Union approved financing for the launch of 30 satellites to form its own version of GPS, known as Galileo, which is projected to be fully operational by 2020. China launched two satellites in 2000 and another in 2003 as part of a local navigation system first known as BeiDou (“Big Dipper”). In 2006 China, which had a limited participation in Galileo, announced plans to expand BeiDou to a full GPS service known as the BeiDou Navigation System. In 2007 China began launching a series of second-generation satellites, known as BeiDou-2, or Compass. The constellation of 35 satellites is scheduled for completion in 2020.
A GPS receiver operated by a user on Earth measures the time it takes radio signals to travel from four or more satellites to its location, calculates the distance to each satellite, and from this calculation determines the user’s longitude, latitude, and altitude. The U.S. Department of Defense originally developed the Navstar constellation for military use, but a less precise form of the service is available free of charge to civilian users around the globe. The basic civilian service will locate a receiver within 10 metres (33 feet) of its true location, though various augmentation techniques can be used to pinpoint the location within less than 1 cm (0.4 inch). With such accuracy and the ubiquity of the service, GPS has evolved far beyond its original military purpose and has created a revolution in personal and commercial navigation. Battlefield missiles and artillery projectiles use GPS signals to determine their positions and velocities, but so do the U.S. space shuttle and the International Space Station as well as commercial jetliners and private airplanes. Ambulance fleets, family automobiles, and railroad locomotives benefit from GPS positioning, which also serves farm tractors, ocean liners, hikers, and even golfers. Many GPS receivers are no larger than a pocket calculator and are powered by disposable batteries, while GPS computer chips the size of a baby’s fingernail have been installed in wristwatches, cellular telephones, and personal digital assistants.
Triangulation
The principle behind the unprecedented navigational capabilities of GPS is triangulation. To triangulate, a GPS receiver precisely measures the time it takes for a satellite signal to make its brief journey to Earth—less than a tenth of a second. Then it multiplies that time by the speed of a radio wave—300,000 km (186,000 miles) per second—to obtain the corresponding distance between it and the satellite. This puts the receiver somewhere on the surface of an imaginary sphere with a radius equal to its distance from the satellite. When signals from three other satellites are similarly processed, the receiver’s built-in computer calculates the point at which all four spheres intersect, effectively determining the user’s current longitude, latitude, and altitude. (In theory, three satellites would normally provide an unambiguous three-dimensional fix, but in practice at least four are used to offset inaccuracy in the receiver’s clock.) In addition, the receiver calculates current velocity (speed and direction) by measuring the instantaneous Doppler effect shifts created by the combined motion of the same four satellites.
In the Navstar system, each satellite broadcasts its navigation signals on two frequencies—1575.42 megahertz (military/civilian) and 1227.6 megahertz (military). These carrier waves are modulated by two pseudo-random binary pulse trains: a 1-megabit-per-second civilian C/A-code (coarse acquisition code) and a 10-megabit-per-second military P-code (precision code). Three new civilian signals are planned at 1176.45, 1227.6, and 1575.42 MHz. Until 2000, a feature known as selective availability (S/A) intentionally degraded the civilian signal’s accuracy; S/A was terminated in part because of safety concerns related to the increasing use of GPS by civilian marine vessels and aircraft. Unaugmented civilian GPS now gives an error variance, for horizontal distances, of 30 metres (100 feet) with a probability of 95 percent—that is, 95 percent of the time the reported location is within 30 metres of the true location. Typical horizontal accuracy is about 10 metres (30 feet; compared with 100 metres [330 feet] with S/A), while vertical accuracy, or altitude, is approximately half as precise. The Doppler effect allows receivers to determine a user’s velocity to an accuracy of about 1 metre (3 feet) per second. The unaugmented military signal, meanwhile, has a horizontal error variance of less than 3 metres (10 feet).
Augmentation
GPS; relativity [Credit: © MinutePhysics (A Britannica Publishing Partner)]Although the travel time of a satellite signal to Earth is only a fraction of a second, much can happen to it in that interval. For example, electrically charged particles in the ionosphere and density variations in the troposphere may act to slow and distort satellite signals. These influences can translate into positional errors for GPS users—a problem that can be compounded by timing errors in GPS receiver clocks. Further errors may be introduced by relativistic time dilations, a phenomenon in which a satellite’s clock and a receiver’s clock, located in different gravitational fields and traveling at different velocities, tick at different rates. Finally, the single greatest source of error to users of the Navstar system is the lower accuracy of the civilian C/A-code pulse. However, various augmentation methods exist for improving the accuracy of both the military and the civilian systems.
When positional information is required with pinpoint precision, users can take advantage of differential GPS techniques. Differential navigation employs a stationary “base station” that sits at a known position on the ground and continuously monitors the signals being broadcast by GPS satellites in its view. It then computes and broadcasts real-time navigation corrections to nearby roving receivers. Each roving receiver, in effect, subtracts its position solution from the base station’s solution, thus eliminating any statistical errors common to the two. The U.S. Coast Guard maintains a network of such base stations and transmits corrections over radio beacons covering most of the United States. Other differential corrections are encoded within the normal broadcasts of commercial radio stations. Farmers receiving these broadcasts have been able to direct their field equipment with great accuracy, making precision farming a common term in agriculture.
Another GPS augmentation technique uses the carrier waves that convey the satellites’ navigation pulses to Earth. Because the length of the carrier wave is more than 1,000 times shorter than the basic navigation pulses, this “carrier-aided” approach, under the right circumstances, can reduce navigation errors to less than 1 cm (0.4 inch). The dramatically improved accuracy stems primarily from the shorter length and much greater numbers of carrier waves impinging on the receiver’s antenna each second.
Yet another augmentation technique is known as geosynchronous overlays. Geosynchronous overlays employ GPS payloads “piggybacked” aboard commercial communication satellites that are placed in geostationary orbit some 35,000 km (22,000 miles) above Earth. These relatively small payloads broadcast civilian C/A-code pulse trains to ground-based users. The U.S. government is enlarging the Navstar constellation with geosynchronous overlays to achieve improved coverage, accuracy, and survivability. Both the European Union and Japan are installing their own geosynchronous overlays.
The Navstar system
The Navstar GPS system consists of three major segments: the space segment, the control segment, and the user segment. The space component is made up of the Navstar constellation in orbit around Earth. The first satellite was an experimental Block I model launched in 1978. Nine more of these developmental satellites followed over the next decade, and 23 heavier and more-capable Block II production models were sent into space from 1989 to 1993. The launch of the 24th Block II satellite in 1994 completed the GPS constellation, which now consists of two dozen Block II satellites (plus three spares orbiting in reserve) marching in single file in six circular orbits around Earth. The orbits are arranged so that at least five satellites are in view from most points on Earth at all times. Since 1994, newer versions of Block II satellites have been launched to replace older models. The first satellite of Block III is scheduled for launch in 2014.
Block II [Credit: Encyclopædia Britannica, Inc.]A typical Block II satellite weighs approximately 900 kg (2,000 pounds) and, with its solar panels extended, is about 17 metres (56 feet) across. Its key elements are the winglike solar arrays that generate electrical power from sunlight, the 12 helical antennas that transmit navigation pulses to users on the ground, and its long, spearlike radio antenna that picks up instructions from control engineers. As a satellite coasts through its 12-hour orbit, its main body pivots continuously and the solar arrays swivel, keeping its navigation antennas pointing toward Earth’s centre and its solar arrays aligned perpendicular to the Sun’s rays.
The control segment consists of one Master Control Station at a U.S. Air Force base in Colorado and four additional unmanned monitoring stations positioned around the world—Haw
จีพีเอส เต็มโลกตำแหน่งระบบ Navstar ทั่วโลกวางตำแหน่งระบบ: ดาวเทียม [เครดิต: ความ ฮีดมาร์ติน] ระบบวิทยุการนำทางตามพื้นที่ที่กระจายกะพริบนำความถูกต้องสูงให้ผู้ใช้ หรือ ใกล้โลก ในสหรัฐอเมริกา Navstar GPS, 24 ดาวเทียมหลักในวงโคจร 6 วงกลมโลกทุก 12 ชั่วโมง รัสเซียรักษาดาวเรียก GLONASS (โลกนำทางระบบดาวเทียม), และในปี 2550 สหภาพยุโรปอนุมัติเงินสำหรับเปิดตัวดาวเทียม 30 แบบจีพีเอส กาลิเลโอ ซึ่งคาดว่าจะสามารถใช้งานทั้งหมด 2563 เรียกว่ารุ่นตัวเอง จีนเปิดตัวสองดาวเทียมในปี 2000 และอื่น ๆ ใน 2003 เป็นส่วนหนึ่งของระบบนำทางเฉพาะครั้งแรก เรียกว่า BeiDou ("จระเข้") ในปี 2006 ประเทศจีน การมีส่วนร่วมจำกัดในกาลิเลโอ ประกาศแผนขยาย BeiDou บริการ GPS เต็มรูปแบบที่เรียกว่าระบบนำทาง BeiDou ในปี 2007 ประเทศจีนเริ่มเปิดตัวชุดของดาวเทียม second-generation เรียกว่า BeiDou-2 หรือเข็มทิศ กลุ่มดาวเทียม 35 มีการจัดกำหนดการเสร็จใน 2020เครื่องรับ GPS ที่ดำเนินการ โดยผู้ใช้บนโลกวัดเวลาสัญญาณวิทยุเดินทางจากดาวเทียมอย่าง น้อย 4 ตำแหน่ง การคำนวณระยะห่างแต่ละสัญญาณดาวเทียม และ จากการคำนวณนี้กำหนดผู้ใช้ของลองจิจูด ละติจูด และสูง กระทรวงกลาโหมสหรัฐอเมริกาเดิมพัฒนากลุ่มดาว Navstar ใช้ทหาร แต่แบบแม่นยำน้อยบริการได้ฟรีผู้ใช้พลเรือนทั่วโลก บริการพลเรือนพื้นฐานจะหาผู้รับภายใน 10 เมตร (33 ฟุต) ของสถานที่จริง แม้ว่าสามารถใช้เทคนิคเพิ่มเติมต่าง ๆ เพื่อระบุตำแหน่งภายในน้อยกว่า 1 เซนติเมตร (0.4 นิ้ว) ด้วยเช่นความถูกต้องและ ubiquity บริการ GPS มีพัฒนาไกลเกินเป้าหมายทหารเดิม และได้สร้างการปฏิวัติในการนำทางส่วนบุคคล และเชิงพาณิชย์ สนามรบขีปนาวุธและปืนใหญ่มาใช้สัญญาณ GPS เพื่อกำหนดตำแหน่งและตะกอนของพวกเขา แต่เพื่อ ทำกระสวยอวกาศสหรัฐ และ สถานีอวกาศนานาชาติเป็น jetliners พาณิชย์ และเครื่องบินส่วนตัว รถพยาบาล fleets รถครอบครัว และ locomotives รถไฟได้ประโยชน์จากตำแหน่ง GPS ซึ่งทำหน้าที่ฟาร์ม liners มหาสมุทร นัก และแม้กระทั่งนักกอล์ฟ ตัวรับ GPS ในตัวไม่ใหญ่กว่ากระเป๋าเครื่องคิดเลข และขับเคลื่อน โดยแบตเตอรี่ผ้าอ้อม ในขณะที่จีพีเอสชิขนาดของเล็บมือของทารกมีการติดตั้งใน wristwatches โทรศัพท์มือถือ และส่วนระบบสามสกุลหลักเบื้องหลังความสามารถในการนำทางเป็นประวัติการณ์ของ GPS คือ ระบบสามสกุล การ triangulate เครื่องรับ GPS แม่นยำวัดเวลาสัญญาณดาวเทียมไปให้เดินทางโดยย่อของโลก — สิบน้อยกว่าของที่สอง แล้วก็คูณเวลา โดยความเร็วของคลื่นวิทยุ – 300000 กิโลเมตร (186,000 ไมล์) ต่อวินาที — ตรงระยะห่างระหว่างนั้นดาวเทียมที่รับ ทำให้ผู้รับอยู่บนพื้นผิวของทรงกลมการจินตภาพกับเท่ารัศมีการท่องเที่ยวจากดาวเทียม เมื่อสัญญาณจากดาวเทียมสามอื่น ๆ ทำนองเดียวกันในการประมวลผล คอมพิวเตอร์ภายในของเครื่องรับสัญญาณคำนวณจุดที่ทรงกลมที่สี่ทั้งหมดอิน การกำหนดของผู้ใช้ปัจจุบันลองจิจูด ละติจูด และระดับความสูงได้อย่างมีประสิทธิภาพ (ในทางทฤษฎี สามดาวเทียมโดยปกติจะให้การแก้ไขสามมิติชัดเจน แต่ในทางปฏิบัติ น้อยสี่ใช้ออฟเซ็ต inaccuracy ในนาฬิกาของเครื่องรับสัญญาณ) นอกจากนี้ รับคำนวณปัจจุบันความเร็ว (ความเร็วและทิศทาง) โดยวัดกะดอปกำลังสร้างการเคลื่อนไหวรวมของดาวเทียมที่สี่เหมือนกันIn the Navstar system, each satellite broadcasts its navigation signals on two frequencies—1575.42 megahertz (military/civilian) and 1227.6 megahertz (military). These carrier waves are modulated by two pseudo-random binary pulse trains: a 1-megabit-per-second civilian C/A-code (coarse acquisition code) and a 10-megabit-per-second military P-code (precision code). Three new civilian signals are planned at 1176.45, 1227.6, and 1575.42 MHz. Until 2000, a feature known as selective availability (S/A) intentionally degraded the civilian signal’s accuracy; S/A was terminated in part because of safety concerns related to the increasing use of GPS by civilian marine vessels and aircraft. Unaugmented civilian GPS now gives an error variance, for horizontal distances, of 30 metres (100 feet) with a probability of 95 percent—that is, 95 percent of the time the reported location is within 30 metres of the true location. Typical horizontal accuracy is about 10 metres (30 feet; compared with 100 metres [330 feet] with S/A), while vertical accuracy, or altitude, is approximately half as precise. The Doppler effect allows receivers to determine a user’s velocity to an accuracy of about 1 metre (3 feet) per second. The unaugmented military signal, meanwhile, has a horizontal error variance of less than 3 metres (10 feet).AugmentationGPS; relativity [Credit: © MinutePhysics (A Britannica Publishing Partner)]Although the travel time of a satellite signal to Earth is only a fraction of a second, much can happen to it in that interval. For example, electrically charged particles in the ionosphere and density variations in the troposphere may act to slow and distort satellite signals. These influences can translate into positional errors for GPS users—a problem that can be compounded by timing errors in GPS receiver clocks. Further errors may be introduced by relativistic time dilations, a phenomenon in which a satellite’s clock and a receiver’s clock, located in different gravitational fields and traveling at different velocities, tick at different rates. Finally, the single greatest source of error to users of the Navstar system is the lower accuracy of the civilian C/A-code pulse. However, various augmentation methods exist for improving the accuracy of both the military and the civilian systems.When positional information is required with pinpoint precision, users can take advantage of differential GPS techniques. Differential navigation employs a stationary “base station” that sits at a known position on the ground and continuously monitors the signals being broadcast by GPS satellites in its view. It then computes and broadcasts real-time navigation corrections to nearby roving receivers. Each roving receiver, in effect, subtracts its position solution from the base station’s solution, thus eliminating any statistical errors common to the two. The U.S. Coast Guard maintains a network of such base stations and transmits corrections over radio beacons covering most of the United States. Other differential corrections are encoded within the normal broadcasts of commercial radio stations. Farmers receiving these broadcasts have been able to direct their field equipment with great accuracy, making precision farming a common term in agriculture.Another GPS augmentation technique uses the carrier waves that convey the satellites’ navigation pulses to Earth. Because the length of the carrier wave is more than 1,000 times shorter than the basic navigation pulses, this “carrier-aided” approach, under the right circumstances, can reduce navigation errors to less than 1 cm (0.4 inch). The dramatically improved accuracy stems primarily from the shorter length and much greater numbers of carrier waves impinging on the receiver’s antenna each second.
Yet another augmentation technique is known as geosynchronous overlays. Geosynchronous overlays employ GPS payloads “piggybacked” aboard commercial communication satellites that are placed in geostationary orbit some 35,000 km (22,000 miles) above Earth. These relatively small payloads broadcast civilian C/A-code pulse trains to ground-based users. The U.S. government is enlarging the Navstar constellation with geosynchronous overlays to achieve improved coverage, accuracy, and survivability. Both the European Union and Japan are installing their own geosynchronous overlays.
The Navstar system
The Navstar GPS system consists of three major segments: the space segment, the control segment, and the user segment. The space component is made up of the Navstar constellation in orbit around Earth. The first satellite was an experimental Block I model launched in 1978. Nine more of these developmental satellites followed over the next decade, and 23 heavier and more-capable Block II production models were sent into space from 1989 to 1993. The launch of the 24th Block II satellite in 1994 completed the GPS constellation, which now consists of two dozen Block II satellites (plus three spares orbiting in reserve) marching in single file in six circular orbits around Earth. The orbits are arranged so that at least five satellites are in view from most points on Earth at all times. Since 1994, newer versions of Block II satellites have been launched to replace older models. The first satellite of Block III is scheduled for launch in 2014.
Block II [Credit: Encyclopædia Britannica, Inc.]A typical Block II satellite weighs approximately 900 kg (2,000 pounds) and, with its solar panels extended, is about 17 metres (56 feet) across. Its key elements are the winglike solar arrays that generate electrical power from sunlight, the 12 helical antennas that transmit navigation pulses to users on the ground, and its long, spearlike radio antenna that picks up instructions from control engineers. As a satellite coasts through its 12-hour orbit, its main body pivots continuously and the solar arrays swivel, keeping its navigation antennas pointing toward Earth’s centre and its solar arrays aligned perpendicular to the Sun’s rays.
The control segment consists of one Master Control Station at a U.S. Air Force base in Colorado and four additional unmanned monitoring stations positioned around the world—Haw
การแปล กรุณารอสักครู่..
