Abstract: Amyotrophic lateral sclerosis (ALS) is a debilitating disease characterized by progressive loss of voluntary motor neurons leading to muscle atrophy, weight loss and respiratory failure. Evidence suggests that inflammation, oxidative stress, mitochondrial dysfunction, apoptosis, glutamate excitotoxicity and proteasomal dysfunction are all responsible for ALS pathogenesis. We review neuroprotective agents with the ability to reduce ALS-related bodyweight loss, summarize the various therapies tested on animal models targeting the proposed molecular mechanisms, compare their effects on bodyweight loss, muscle damage, disease onset, duration and survival, and analyze their structure-activity relationships, with the overall goal of creating a screening strategy for further clinical application.
Abstract: Amyotrophic lateral sclerosis (ALS) is a debilitating disease characterized by progressive loss of voluntary motor neurons leading to muscle atrophy, weight loss and respiratory failure. Evidence suggests that inflammation, oxidative stress, mitochondrial dysfunction, apoptosis, glutamate excitotoxicity and proteasomal dysfunction are all responsible for ALS pathogenesis. We review neuroprotective agents with the ability to reduce ALS-related bodyweight loss, summarize the various therapies tested on animal models targeting the proposed molecular mechanisms, compare their effects on bodyweight loss, muscle damage, disease onset, duration and survival, and analyze their structure-activity relationships, with the overall goal of creating a screening strategy for further clinical application.
การแปล กรุณารอสักครู่..