Nucleosynthesis and Fusion Reactions
Nucleosynthesis simply refers to the production of nuclei heavier than hydrogen. This occurs in main sequence stars through two main processes, the proton-proton chain and the CNO cycle (carbon, nitrogen, oxygen). Primordial nucleosynthesis occurred very early in the history of the Universe, resulting in some helium and small traces of lithium and deuterium, the heavy isotope of hydrogen. Fusion processes in post-main sequence stars are responsible for many of the heavier nuclei. Other mechanisms such as neutron capture also occur in the last stages of massive stars. Both discussed in later pages.
Main sequence stars fuse hydrogen into helium within their cores. This is sometimes called "hydrogen burning" but you need to be careful with this term. "Burning" implies a combustion reaction with oxygen but the process within stellar cores is a nuclear reaction, not a chemical one.
The nuclear fusion in the cores of main sequence stars involves positive hydrogen nuclei, ionised hydrogen atoms or protons, to slam together, releasing energy in the process. At each stage of the reaction, the combined mass of the products is less than the total mass of the reactants. This mass difference is what accounts for the energy released according to Einstein's famous equation: E = m c2 where E is the energy, m the mass and c the speed of light in a vacuum. This is better expressed as:
E = Δm c2 where Δm is the change in mass. (Equation 6.2)
In conditions such as those on Earth, if we try to bring two protons (hydrogen nuclei) together the electrostatic interaction tends to cause them to repel. This coulombic repulsion must be overcome if the protons are to fuse. The actual process whereby two protons can fuse involves a quantum mechanical effect known as tunneling and in practice requires the protons to have extremely high kinetic energies. This means that they must be traveling very fast, that is have extremely high temperatures. Nuclear fusion only starts in the cores of stars when the density in the core is great and the temperature reaches about 10 million K.
There are two main processes by which hydrogen fusion takes place in main sequence stars - the proton-proton chain and the CNO (for carbon, nitrogen, oxygen) cycle.
Proton-Proto