Scalability and Real-Time Performance Scalability in recommender systems includes both very large problem sizes and real-time latency requirements. For instance, a recommender system connected to a large Web site must produce each recommendation within a few tens of milliseconds while serving hundreds or thousands of consumers simultaneously. The key performance measures are the maximum accepted latency for a recommendation (tens to hundreds of milliseconds), the number of simultaneous recommendation requests (tens to thousands), the number of consumers (hundreds of thousands to millions), the number of products (tens to millions), and the number of ratings per consumer (tens to thousands). Many techniques from data mining can be adapted to the scalability problem for recommender systems, including dimensionality reduction and parallelism, but must be modified to meet the simultaneous throughput and latency requirements.
ความยืดหยุ่นและ scalability ประสิทธิภาพเวลาจริงในระบบแนะนำมีทั้งขนาดใหญ่มากปัญหาขนาดและความต้องการศักยภาพแบบเรียลไทม์ ตัวอย่าง การแนะนำระบบเชื่อมต่อกับเว็บไซต์ขนาดใหญ่จะผลิตแต่ละคำแนะนำภายในไม่กี่สิบมิลลิวินาทีในขณะที่ให้บริการหลายร้อยหรือหลายพันของผู้บริโภคไปพร้อมกัน The key performance measures are the maximum accepted latency for a recommendation (tens to hundreds of milliseconds), the number of simultaneous recommendation requests (tens to thousands), the number of consumers (hundreds of thousands to millions), the number of products (tens to millions), and the number of ratings per consumer (tens to thousands). Many techniques from data mining can be adapted to the scalability problem for recommender systems, including dimensionality reduction and parallelism, but must be modified to meet the simultaneous throughput and latency requirements.
การแปล กรุณารอสักครู่..
