4. BUILDING THE IPSS
The ”intelligence” feature of the IPSS is presented in the
recognition and classification stages. In this section, we
present the process for the license plate recognition and classification, followed by models in system analysis and design.
4.1 Motorcycle license plate recognition and
classification
The process for motorcycle license plate recognition and
classification is proposed as in Figure 5. In this process,
when the IPSS receives images from cameras, it locates and
extracts the license plate area. From this area, the IPSS
does the same method to locate and extract the images of
letters. These images of letters are then converted to binary
values so that they can be used for the SVM model. Finally,
the SVM model classifies these binary values to letters (there
are a maximum of 36 values, e.g., [0..9, A..Z] to be classified)
Figure 5: License plate recognition and classification
process
4.1.1 License plate area recognition
Figure 6 describes for the license plate area recognition
and extraction. This means that from the image captured
by camera, the system will recognize and locate the area of
the license plate, then extracting that area. Technically, in
this stage we use the cascade of Boosting classifiers (i.e., each
classifier in Figure 4 is a Boosting model [2]) with Haar-like
features [14] to recognize the license plate area. Fortunately,
these algorithms are available in the EmguCV5 library, thus
we do not need to re-implement them but we should know
how to use them as well as how to pre-process and postprocess the results to get the license plate area. Each step
is thoroughly described as in the following.
Figure 6: License plate area recognition and extraction
Step 1: Preparing a set of images which contain the license plate for training. In this work, we use 2,250 images
including 750 license plate images (called positive images)
and 1,500 background images - without containing the license plate (called negative images). These two sets of images should have the same sizes (e.g., 640 x 480 pixels in
4. BUILDING THE IPSSThe ”intelligence” feature of the IPSS is presented in therecognition and classification stages. In this section, wepresent the process for the license plate recognition and classification, followed by models in system analysis and design.4.1 Motorcycle license plate recognition andclassificationThe process for motorcycle license plate recognition andclassification is proposed as in Figure 5. In this process,when the IPSS receives images from cameras, it locates andextracts the license plate area. From this area, the IPSSdoes the same method to locate and extract the images ofletters. These images of letters are then converted to binaryvalues so that they can be used for the SVM model. Finally,the SVM model classifies these binary values to letters (thereare a maximum of 36 values, e.g., [0..9, A..Z] to be classified)Figure 5: License plate recognition and classificationprocess4.1.1 License plate area recognitionFigure 6 describes for the license plate area recognitionand extraction. This means that from the image capturedby camera, the system will recognize and locate the area ofthe license plate, then extracting that area. Technically, inthis stage we use the cascade of Boosting classifiers (i.e., eachclassifier in Figure 4 is a Boosting model [2]) with Haar-likefeatures [14] to recognize the license plate area. Fortunately,these algorithms are available in the EmguCV5 library, thusเราไม่จำเป็นต้องเปิดใช้พวกเขา แต่เราควรรู้วิธีการใช้ตลอดจนวิธีการก่อนดำเนินการ และผลลัพธ์ที่จะได้รับพื้นที่ป้าย postprocess แต่ละขั้นตอนอย่างละเอียดที่อธิบายไว้ต่อไปนี้รูปที่ 6: การรับรู้ที่ตั้งป้ายและสกัดขั้นตอนที่ 1: เตรียมชุดของรูปที่ประกอบด้วยป้ายสำหรับการฝึกอบรม ในงานนี้ เราใช้ภาพ 2,250รวมภาพแผ่นป้ายทะเบียน (เรียกว่าภาพเชิงบวก)และ 1,500 รูป - พื้นหลัง โดยประกอบด้วยแผ่นป้ายทะเบียนที่ (เรียกว่าภาพติดลบ) เหล่านี้สองชุดของภาพควรมีขนาดเดียวกัน (เช่น 640 x 480 พิกเซล
การแปล กรุณารอสักครู่..
