Following the demonstrations of the mutagenicity of X-rays on fruit flies and maize by Muller [16] and Stadler [18], respectively, plant scientists devoted significant efforts to establishing the experimental protocols for the use of radiation to generate heritable variations that could be used in crop improvement. Within three decades, mutation breeding had become an established plant breeding strategy and in a little less than a century is credited with the development of over 3200 crop varieties that are being grown all over the world [42]. The success of plant breeding depends largely on the availability of utilizable heritable variations. When desirable variations are easily discernible from well characterized germplasm collections, the plant breeder’s task is fairly straightforward. In instances where such variations are either unavailable to the breeder or are observed only in materials with otherwise undesirable genetic backgrounds, induced mutations may be the only way to generate desirable variations for use in breeding superior crop varieties. The Joint Division of the Food and Agriculture Organization of the United Nations and the International Atomic Energy Agency (Joint FAO/IAEA) in Vienna, Austria which maintains a Mutant Varieties Database (MVD) for these crop varieties [42] introduced some newly developed mutant rice varieties in China and Bangladesh on its website [43]. For China, these were the rice variety with modified starch characteristics suitable for managing diabetes and obesity; one with high contents of zinc; and yet another with round grains of reduced size that is suitable for formulating baby food. The newly released high yielding rice variety in Bangladesh, BINA Dhan-7, matured earlier than other varieties of comparable yield by about one month, was flood and disease resistant and also amenable to intercropping. These varied induced variations are reflective of the other over 3200 crop varieties that have been developed through induced mutation-mediated strategies in the over 80 years since the demonstration of the feasibility of induced mutations for crop improvement [42].