The classical interpretation of probability is based on the concept of equally likely outcomes. For example, when a coin is tossed, there are two possible outcomes: a head or a tail. If it may be assumed that these outcomes are equally likely to occur, then they must have the same probability. Since the sum of the probabilities must be 1, both the probability of a head and the probability of a tail must be 1/2. More generally, if the outcome of some process must be one of n different outcomes, and if these n outcomes are equally likely to occur, then the probability of each outcome is 1/n.