Being able to input A and output B will transform many industries. The technical term for building this A→B software is supervised learning. A→B is far from the sentient robots that science fiction has promised us. Human intelligence also does much more than A→B. These A→B systems have been improving rapidly, and the best ones today are built with a technology called deep learning or deep neural networks, which were loosely inspired by the brain. But these systems still fall far short of science fiction. Many researchers are exploring other forms of AI, some of which have proved useful in limited contexts; there may well be a breakthrough that makes higher levels of intelligence possible, but there is still no clear path yet to this goal
Today’s supervised learning software has an Achilles’ heel: It requires a huge amount of data. You need to show the system a lot of examples of both A and B. For instance, building a photo tagger requires anywhere from tens to hundreds of thousands of pictures (A) as well as labels or tags telling you if there are people in them (B). Building a speech recognition system requires tens of thousands of hours of audio (A) together with the transcripts (B).
So what can A→B do? Here’s one rule of thumb that speaks to its disruptiveness:
If a typical person can do a mental task with less than one second of thought, we can probably automate it using AI either now or in the near future
Being able to input A and output B will transform many industries. The technical term for building this A→B software is supervised learning. A→B is far from the sentient robots that science fiction has promised us. Human intelligence also does much more than A→B. These A→B systems have been improving rapidly, and the best ones today are built with a technology called deep learning or deep neural networks, which were loosely inspired by the brain. But these systems still fall far short of science fiction. Many researchers are exploring other forms of AI, some of which have proved useful in limited contexts; there may well be a breakthrough that makes higher levels of intelligence possible, but there is still no clear path yet to this goalToday’s supervised learning software has an Achilles’ heel: It requires a huge amount of data. You need to show the system a lot of examples of both A and B. For instance, building a photo tagger requires anywhere from tens to hundreds of thousands of pictures (A) as well as labels or tags telling you if there are people in them (B). Building a speech recognition system requires tens of thousands of hours of audio (A) together with the transcripts (B).So what can A→B do? Here’s one rule of thumb that speaks to its disruptiveness:If a typical person can do a mental task with less than one second of thought, we can probably automate it using AI either now or in the near future
การแปล กรุณารอสักครู่..
