Statisticalanalysishasbeenusedforthe first timetoevaluatethedispersionofquantitativedatainthe
solid-phase microextraction(SPME)followedbygaschromatography–mass spectrometry(GC–MS)
analysisofblackberry(Rubus ulmifolius Schott) volatileswiththeaimofimprovingtheirprecision.
Experimental andrandomlysimulateddatawerecomparedusingdifferentstatisticalparameters
(correlation coefficients, PrincipalComponentAnalysisloadingsandeigenvalues).Non-randomfactors
wereshowntosignificantly contributetototaldispersion;groupsofvolatilecompoundscouldbe
associated withthesefactors.Asignificant improvementofprecisionwasachievedwhenconsidering
percent concentrationratios,ratherthanpercentvalues,amongthoseblackberryvolatileswithasimilar
dispersion behavior.
As noveltyoverpreviousreferences,andtocomplementthismainobjective,thepresenceofnon-
random dispersiontrendsindatafromsimpleblackberrymodelsystemswasevidenced.Althoughthe
influence ofthetypeofmatrixondataprecisionwasproved,thepossibilityofabetterunderstandingof
the dispersionpatternsinrealsampleswasnotpossiblefrommodelsystems.
The approachhereusedwasvalidatedforthe first timethroughthemulticomponentcharacterization
of Italianblackberriesfromdifferentharvestyears.
Statisticalanalysishasbeenusedforthe first timetoevaluatethedispersionofquantitativedatainthe
solid-phase microextraction(SPME)followedbygaschromatography–mass spectrometry(GC–MS)
analysisofblackberry(Rubus ulmifolius Schott) volatileswiththeaimofimprovingtheirprecision.
Experimental andrandomlysimulateddatawerecomparedusingdifferentstatisticalparameters
(correlation coefficients, PrincipalComponentAnalysisloadingsandeigenvalues).Non-randomfactors
wereshowntosignificantly contributetototaldispersion;groupsofvolatilecompoundscouldbe
associated withthesefactors.Asignificant improvementofprecisionwasachievedwhenconsidering
percent concentrationratios,ratherthanpercentvalues,amongthoseblackberryvolatileswithasimilar
dispersion behavior.
As noveltyoverpreviousreferences,andtocomplementthismainobjective,thepresenceofnon-
random dispersiontrendsindatafromsimpleblackberrymodelsystemswasevidenced.Althoughthe
influence ofthetypeofmatrixondataprecisionwasproved,thepossibilityofabetterunderstandingof
the dispersionpatternsinrealsampleswasnotpossiblefrommodelsystems.
The approachhereusedwasvalidatedforthe first timethroughthemulticomponentcharacterization
of Italianblackberriesfromdifferentharvestyears.
การแปล กรุณารอสักครู่..

Statisticalanalysishasbeenusedforthe first timetoevaluatethedispersionofquantitativedatainthe
solid-phase microextraction(SPME)followedbygaschromatography–mass spectrometry(GC–MS)
analysisofblackberry(Rubus ulmifolius Schott) volatileswiththeaimofimprovingtheirprecision.
Experimental andrandomlysimulateddatawerecomparedusingdifferentstatisticalparameters
(correlation coefficients, PrincipalComponentAnalysisloadingsandeigenvalues).Non-randomfactors
wereshowntosignificantly contributetototaldispersion;groupsofvolatilecompoundscouldbe
associated withthesefactors.Asignificant improvementofprecisionwasachievedwhenconsidering
percent concentrationratios,ratherthanpercentvalues,amongthoseblackberryvolatileswithasimilar
dispersion behavior.
As noveltyoverpreviousreferences,andtocomplementthismainobjective thepresenceofnon , -
สุ่ม dispersiontrendsindatafromsimpleblackberrymodelsystemswasevidenced . althoughthe
อิทธิพล ofthetypeofmatrixondataprecisionwasproved thepossibilityofabetterunderstandingof dispersionpatternsinrealsampleswasnotpossiblefrommodelsystems ,
.
timethroughthemulticomponentcharacterization approachhereusedwasvalidatedforthe ครั้งแรกของ italianblackberriesfromdifferentharvestyears .
การแปล กรุณารอสักครู่..
