• There are several problems with current practices for treating diabetic foot ulcers.
• First, patients must go to their wound clinic on a regular basis to have their wounds checked by their clinicians. This need for frequent clinical evaluation is not only inconvenient and time consuming for patients and clinicians, but also represents a significant health care cost because patients may require special transportation, e.g., ambulances.
• Second, a clinician’s wound assessment process is based on visual examination. He/she describes the wound by its physical dimensions and the color of its tissues, providing important indications of the wound type and the stage of healing. Because the visual assessment does not produce objective measurements and quantifiable parameters of the healing status, tracking a wound’s healing process across consecutive visits is a difficult task for both clinicians and patients.
• The wound boundary determination was done with a particular implementation of the level set algorithm; specifically the distance regularized level set evolution The principal disadvantage of the level set algorithm is that the iteration of global level set function is too computationally intensive to be implemented on smart phones, even with the narrow band confined implementation based on GPUs.
• In addition, the level set evolution completely depends on the initial curve which has to be pre-delineated either manually or by a well-designed algorithm. Finally, false edges may interfere with the evolution when the skin color is not uniform enough and when missing boundaries, as frequently occurring in medical images, results in evolution leakage (the level set evolution does not stop properly on the actual wound boundary). Hence, a better method was required to solve these problems.