Reflections and Extensions (20 Minutes)
Return to some of the students’ original questions. There are a variety of ways to conclude the investigation at the end of Day 2, using the charts created, while leaving some questions open for future study later in the year or at later grade levels. There are also multiple avenues for exploration during Day 2 and/or at later dates.
• Questions such as “How often will I get heads or tails?” can be answered using the
experimental data and the theoretical probability models. An individual may flip heads
more often than tails, but a large sample will produce approximately equal percentages of heads and tails.
• Students may notice that the number of total possible outcomes when flipping a coin N times doubles as the number of flips grows by 1. Drawing a tree diagram may explain why this is the case.
• Ask students to respond to the prompt, “Where will I arrive after a certain number of
flips?” in their own words. Examine students’ different responses to the question as
they record them and ask students to share their statements with others. The
statement, “There is a 3/8 chance I will arrive back at zero after 4 flips,” for example,
may be surprising to some students.
• What is the average distance a person will be from zero after 4 flips? Introduce students to the idea of expected value.
• Students may be curious about the probability of everyone in the class flipping heads at the same time and moving in the same direction. What are the chances of that event?
• Return to students’ experience with the 6-Flip Trip. Do you think the chance that a
person will return to zero is greater than or smaller than 3/8? List all the possible ways to arrive at zero after 6 flips and determine the probability. Students may be interested in exploring how to find the total number of unique sequences of M heads within N coin flips.
• By listing the number of ways to arrive at each location in Flip Trips of different length, students may notice that the number of ways to arrive at a location in an N-Flip Trip is the sum of the ways of arriving at the two adjacent locations in an (N-1)-Flip Trip. Why is this so? (For example, there are 6 ways to arrive at 0 in a 4-Flip Trip, and 4 ways of arriving at 2. There will be 10 ways of arriving at 1 in a 5-Trip Flip. Why?) Students can begin to investigate some of the properties of Pascal’s Triangle.
• What if we used dice and made a walk with a 2/3 probability of moving forward and 1/3 probability of moving back? How would the probabilities of arriving at the different final positions change?
Reflections and Extensions (20 Minutes)Return to some of the students’ original questions. There are a variety of ways to conclude the investigation at the end of Day 2, using the charts created, while leaving some questions open for future study later in the year or at later grade levels. There are also multiple avenues for exploration during Day 2 and/or at later dates.• Questions such as “How often will I get heads or tails?” can be answered using theexperimental data and the theoretical probability models. An individual may flip headsmore often than tails, but a large sample will produce approximately equal percentages of heads and tails.• Students may notice that the number of total possible outcomes when flipping a coin N times doubles as the number of flips grows by 1. Drawing a tree diagram may explain why this is the case.• Ask students to respond to the prompt, “Where will I arrive after a certain number offlips?” in their own words. Examine students’ different responses to the question asthey record them and ask students to share their statements with others. Thestatement, “There is a 3/8 chance I will arrive back at zero after 4 flips,” for example,may be surprising to some students.• What is the average distance a person will be from zero after 4 flips? Introduce students to the idea of expected value.• Students may be curious about the probability of everyone in the class flipping heads at the same time and moving in the same direction. What are the chances of that event?•กลับไปยังประสบการณ์ของนักเรียนด้วยการเดิน 6 พลิก คุณคิดว่า โอกาสที่การคนจะกลับเป็นศูนย์มีค่ามากกว่า หรือน้อยกว่า 3/8 รายการวิธีการเป็นไปได้ทั้งหมดถึงศูนย์หลัง 6 flips และกำหนดความเป็นไปได้ นักเรียนอาจจะสนใจในการสำรวจวิธีการหาจำนวนเฉพาะลำดับของหัว M ภายใน N เหรียญพลิก•ตามรายทางถึงที่ตั้งในทริพลิกความยาวแตกต่างกัน นักเรียนอาจสังเกตเห็นว่า จำนวนวิธีที่จะมาถึงสถานที่ในการเดินพลิก N ผลรวมของวิธีการสองตำแหน่งที่อยู่ติดกันใน (N-1) -พลิกเดินได้ เหตุนี้เป็นเพื่อ (ตัวอย่าง มี 6 วิธีสู่ 0 4 พลิกเดิน และ 4 วิธี 2 จะมี 10 วิธี 1 ในพลิก 5-เที่ยว ทำไม) นักเรียนสามารถเริ่มต้นการตรวจสอบบางส่วนของคุณสมบัติของสามเหลี่ยมปาสกาล•ถ้าเราใช้อาวุธ และเดินไป ด้วยความน่าเป็น 2/3 ของการย้ายไปข้างหน้า และ 1/3 น่าย้อนกลับไปทำ ว่าจะการเปลี่ยนแปลงกิจกรรมของตำแหน่งสุดท้ายที่แตกต่างกัน
การแปล กรุณารอสักครู่..