The above table presents the results from two well-known tests of normality, namely the Kolmogorov-Smirnov Test and the Shapiro-Wilk Test. The Shapiro-Wilk Test is more appropriate for small sample sizes (< 50 samples), but can also handle sample sizes as large as 2000. For this reason, we will use the Shapiro-Wilk test as our numerical means of assessing normality.
We can see from the above table that for the "Beginner", "Intermediate" and "Advanced" Course Group the dependent variable, "Time", was normally distributed. How do we know this? If the Sig. value of the Shapiro-Wilk Test is greater than 0.05, the data is normal. If it is below 0.05, the data significantly deviate from a normal distribution.
If you need to use skewness and kurtosis values to determine normality, rather the Shapiro-Wilk test, you will find these in our enhanced testing for normality guide. You can learn more about our enhanced content