Surface variation maps
The morphological evolution of the slope has been monitored through the comparison of multi-temporal DEMs and orthophoto datasets. Differences in the vertical component (DEM differences) were firstly used to qualitatively represent the accumulation and erosion areas and, secondly, to quantify the volume of the mass displaced by the landslides and accumulated by the lava flows on the flank.
Fig. 6 illustratesa selection of the most representative difference maps clearly showing the morphological changes that occurred on the slope. As a consequence of the residual analysis performed in the stable areas, height differences lower that 2.5 m were not considered significant and are therefore not presented in the figure.
Areas showing patterns not compatible with the scar and lava flow geometries are caused by unrecoverable matching blunders corresponding to thick layers of vapour and suspended ashes covering the ground. The latter phenomena were caused by the crater emissive activity, hot magmatic material falling into the sea water, and continuous minor instability phenomena from the steepest scarps of the landslides.
Fig. 6ashows the changes of the slope as observedon January 5, 2003, taking the data of May 2001 as reference. The limits of the landslide area are clearly visible, showing negative differences (up to 70 m). Positive differences close to the NE flank of the Sciara correspond to an accumulation area (up to 10–15 m) of a lava flow outpouring from a vent located at about 500 m a.s.l. Other small areas showing large differences (both negative and positive) can be attributed to the poor quality of the images acquired on January 5, which greatly affected the performance of the automatic matching procedure and limited the capability of the manual editing. Fig. 6b (January 27, 2003 versus May 2001) shows the partial filling of the scar due the still large lava effusion rate. Fig. 6c–h show the gradual erosion, after January 27, of the lateral flanks of the slide towards SW, which removed a layer of deposits about 15–20 m of thickness. The upper part of the scar almost reached the crater rim area, where the slope was eroded up to 30 m of depth. The scar was progressively filled by lava flowing from different vents and, secondarily, by sliding debris. The effusive activity gradually decreased from February until July, while the erosion of the flanks persisted, particularly towards the crater area (Fig. 6f–h). From the middle of February, the increased activity of vents at 600 m a.s.l. caused large volumes of lava (a few tenths of a metre thick) to accumulate, mostly on the top of the slope, creating a potentially unstable area. The evolution of this accumulation area is clearly visible from Fig. 6e–h.
เปลี่ยนแปลงพื้นผิวแผนที่ วิวัฒนาการทางสัณฐานวิทยาของทางลาดชันได้รับการตรวจสอบ โดยการเปรียบเทียบหลายขมับ DEMs และ orthophoto datasets ความแตกต่างในคอมโพเนนต์แนวตั้ง (แตกต่าง DEM) ประการแรกใช้สะสมและกัดเซาะพื้นที่ที่เข้าถึงคุณภาพ และ ประการที่สอง การกำหนดปริมาณของมวลพลัดถิ่นจากแผ่นดินถล่ม และสะสม โดยลาวาบนปีก เลือก illustratesa 6 รูปต่างตัวแทนสุดแผนที่ชัดเจนแสดงให้เห็นการเปลี่ยนแปลงทางสัณฐานวิทยาที่เกิดขึ้นบนทางลาดชัน ผลการวิเคราะห์ตกค้างดำเนินการในพื้นที่มีเสถียรภาพ ความแตกต่างของความสูงต่ำที่ 2.5 m ไม่พิจารณาว่าสำคัญ และดังนั้นจึงไม่แสดงในรูป พื้นที่ที่แสดงรูปแบบที่ไม่เข้ากันได้กับรูปทรงเรขาคณิตไหลแผลและหินลาวาที่เกิดจากผิดพลาดตรงที่ไม่สามารถกู้คืนที่สอดคล้องกับชั้นหนาของไอและเถ้าถ่านลอยครอบคลุมพื้นดิน หลังปรากฏการณ์ที่เกิดจากปล่อง emissive กิจกรรม วัสดุ magmatic ร้อนที่ตกไปอยู่ในน้ำทะเล และปรากฏการณ์ความไม่เสถียรรองต่อเนื่องจาก scarps ความชันของแผ่นดินถล่ม Fig. 6ashows the changes of the slope as observedon January 5, 2003, taking the data of May 2001 as reference. The limits of the landslide area are clearly visible, showing negative differences (up to 70 m). Positive differences close to the NE flank of the Sciara correspond to an accumulation area (up to 10–15 m) of a lava flow outpouring from a vent located at about 500 m a.s.l. Other small areas showing large differences (both negative and positive) can be attributed to the poor quality of the images acquired on January 5, which greatly affected the performance of the automatic matching procedure and limited the capability of the manual editing. Fig. 6b (January 27, 2003 versus May 2001) shows the partial filling of the scar due the still large lava effusion rate. Fig. 6c–h show the gradual erosion, after January 27, of the lateral flanks of the slide towards SW, which removed a layer of deposits about 15–20 m of thickness. The upper part of the scar almost reached the crater rim area, where the slope was eroded up to 30 m of depth. The scar was progressively filled by lava flowing from different vents and, secondarily, by sliding debris. The effusive activity gradually decreased from February until July, while the erosion of the flanks persisted, particularly towards the crater area (Fig. 6f–h). From the middle of February, the increased activity of vents at 600 m a.s.l. caused large volumes of lava (a few tenths of a metre thick) to accumulate, mostly on the top of the slope, creating a potentially unstable area. The evolution of this accumulation area is clearly visible from Fig. 6e–h.
การแปล กรุณารอสักครู่..