RECLAMATION AND SOIL IMPROVEMENT ON ULTRA-SOFT SOILByVictor ChoaNanyan การแปล - RECLAMATION AND SOIL IMPROVEMENT ON ULTRA-SOFT SOILByVictor ChoaNanyan ไทย วิธีการพูด

RECLAMATION AND SOIL IMPROVEMENT ON

RECLAMATION AND SOIL IMPROVEMENT ON ULTRA-SOFT SOIL
By
Victor Choa
Nanyang Technological University, Singapore
ABSTRACT
Reclamation on ultra-soft soil is extremely difficult due to its low strength and high compressibility. Slow and steady application of load is required in order to maintain the stability of the foundation. The method of reclamation on ultra-soft soil is described in this paper. Large settlement usually occurs which does not follow Terzaghi’s small strain theory. The large settlement which occurs in the initial stage of deformation does not lead to a gain in effective stress. This paper presents a case study of a reclamation and improvement of an ultra-soft soil and the deformation characteristic of the ultra-soft soil after reclamation.

INTRODUCTION
Due to a shortage of land in coastal cities, reclamation works are being carried out to expand the land. Areas with favourable foundation for reclamation are becoming scarce .As such reclamation works have to be carried out on non- favourable foundation such as waste pond, slurry pond and recently formed estuary deposits which are still undergoing self-weight consolidation. Since such deposits are very soft with high compressibility and negligible shear strength, reclamation on them are extremely difficult. Special techniques are required for reclamation of this type of deposit. In addition to the difficulties in reclamation on such foundation, it also contributes large settlement upon application of the additional load. Large settlement usually occurs with minimum effective stress gain. This type of large strain deformation does not complyTerzaghi’s small strain theory. This paper describes a case study on reclamation and soil improvement on ultra-soft soil. Site investigation and characterization of the ultra-soft soil and the interim assessment of the improvement of the ultra-soft soil are also discussed.

SITE INVESTIGATION FOR ULTRA-SOFT SOIL
Since ultra-soft soil is too soft for conventionl me methods of site investigation, sampling was carried out with a twist sampler as shown in Figure 1. Field vane shear tests were carried with bigger dimension blades due to the low shear strength. Bulk density were measured with Gamma-Gamma Probe. Site investigations had to be carried out from the floating pontoon rather than jack-up barge.

CASE STUDY
In order to demonstrate the process of reclamation and soil improvement of ultra-soft soil, a case study of reclamation of a siltpond at Changi, Singapore is chosen. The location of the siltpond is shown in Figure 2.



Figure 1. Twist asmpler




Figure 2. Location of siltpond

Description of the Siltpond
During the reclamation works for Changi Airport, between 1975 and 1978 the borrowing of sand created a pit in the seabed to an elevation of about -22 m CD (Chart Datum). In 1986, a containment sand bund was constructed around this borrow pit. Silt and clay washings from sand quarrying activities inland was transported in pipelines with high water content and discharged into the bunded area. The pond was locally named as the siltpond. The siltpond was trapezoidal in shape and had an area of about 180 hectares. It measured about 2000 m in length and 750 m and 1050 m in width at the two ends.
The elevation of the top of the sediment varied from 0 to -5 m CD with an average at about -3 to-4 m CD. The top of the slurry was taken as the elevation at which the density was greater than 1.1 Mg/m3 . The elevation of the bottom of the slurry varied from 0 to -22 m CD with an average at – 12 to – 18 m CD. The thickness of sediment varied from 1 to about 20 m with an average of about 10 m to 15 m. Location of various types of soil investigation in the siltpond shown in Figures 3. Contour of depth to various density layers are shown in Figures 4. A typical density profile determined form Gamma-Gamma logging is shown in Figures 5. Details of the siltpond can be found in Bo et al., (1997)a, 1997b and 1998).


Figure 3. Location of site investigation in siltpond

Figure 4.Isopach map of zone B (Density 1.3 to 1.5)




Characterization of the Siltpond Slurry Prior to Reclamation
The siltpond material prior to reclamation consisted of low to high plasticity clay (Figure 6 ). The water content was as high as 250 percent with an average of 170 percent. The material was still undergoing self-weight consolidation. The density of the top part of silt was only slightly above that of salt water density. The mean grain size of silt (D50) was smaller than 3 microns and about 80 percent of the particles were smaller than 63 microns (Figure 8). The strength of the about 80 percent of the particles were smaller than 63 microns (Figure 8). The strength of the slurry was as low as 0.5 kPa at the soil surface and increasing with depth at only 0.2 kPa per meter. A summary of the properties of the siltpond material is shown on
Table 1. The properties versus depth are shown in Figure 7. It can be seen in the figures that the material had a very high moisture content and low bulk density. The preconsolidation pressures were much lower than the overburden pressure which confirmed that the material was under-consolidated and still undergoing self-weight consolidation. The liquidity index decreased with depth. Results of density logging also showed that the density increased with depth. This confirmed that consolidation commenced from the bottom rather than from the surface. Details of siltpond slurry were described in Bo et al. (2001).

Reclamation of Siltpond
First Phsae Sand Spreading
The material at the surface of the siltpond was extremely soft and virtually no shear strength. Direct hydraulic filling or dumping of sand on this ultra-soft foundation was not possible. A sand spreading method was therefore proposed. In this method sand was pumped through pipelines with high water content and deposited in a loose form with low density. The spreader used in the sand spreading work is shown in Figure 9. The photographic features of siltpond prior toreclamation is shown in Figure 10.


Figure 5. Typical density profile

Figure 6.Siltpond material on classification chart

Figure 7.Geotechnical parameters VS.depth prior to sand spreading (a) bulk density (b) liquidity index (c) water content &Atterberg limit (d) initial void ratio (e) compression index (f) coefficient of consolidation (g) preconsolidation pressure (h) overconsolidattion ratio (i) shear strength from field vane test (i) sensitivity from field vane test


Figure 8. Grain size distribution curve ofsiltpond materials.


Table 1. Soil properties of siltpond clay prior to reclamation and after sand spreading
Properties Prior to Reclamation
Range of Values After sand spreading
Range of Values
Bulk Density (Mg/m3) 1.25-1.6 1.3-1.9
Water Content (%) 75-170 40-150
Liquid Limit (%) 60-115 50-105
Plastic Limit (%) 22-45 18-30
Initial Void Ratio 2-4.5 2-3.5
Specific Gravity 2.66-2.7 2.5-2.7
Compression Index 0.5-1.7 0.6-1.4
Overconsolidation Ratio 0.2-1.2 0.2-1.0
∆Cu/∆p’ 0.078 0.094

The sequence of sand spreading in the first phase in the silt pond consisted of evenly spreading sand in 20 cm lifts until the total sand thickness deposited was 2 m. A certain rest period was required after each 20 cm lift to ensure stability of the foundation. A hydrographic survey was carried out after each lift to verify the thickness of the deposited sand. Hydrographic survey profiles after each phase of sand spreading are shown in Figure 11. The sand spreading in this phase was carried out to an elevation of about-1 to 0 m CD. Details of the method of reclamation on siltpond was extensively described in Bo et at., 1998.


Figure 9. Sand spreader used in siltpond reclamation

Figure 10.Siltpond prior to reclamation

Figure 11.Hydrographic survey profile after each phase of spreading.

Figure 12.Comparison of density profile after first phase of sand spreading.
Site Investigation During and After First Phase of Sand Spreading
In order to determine the build up of sand on top of the slurry and to investigate the improvement of the slurry, interim boreholes, field vane shear tests and density loggings were carried out. The build up of sand were found to be up 5.2 meters. The increase in density at the bottom part of the slurry but not at the top of the soil were noted at several places. Figure 12 shows a comparison between typical density logging results before and after the sand spreading. It can be seen that the bottom portion of the slurry has reached the soil stage while the top portion was still in the slurry stage. Characteristics of the material inside the siltpond after sand spreading to about 0m CD are shown in Figures 13 (a) to (j)
It can be seen in the figures that the bulk densities of soil increased to about 1.3 to 1.5 Mg/m3.However from the liquidity index the moisture content in the top 10 meters was still above the liquid limit. The void ratio reduced to about 3 to 4 within the top 10 metes and to about 2 or slightly greater at depths below 10 meters. The preconsolidation pressures of most cases were still below the original effective overburden pressure (excluding the additional load from the new sand fill). This indicated that the soil was under consolidated. The overconsolidation ratio of the material was below unity. The undrained shear strength measured by field vane tests were still below 5 kPa with an average of 2 kPa up to 7 meters depth and 5 to 7 kPa below 7 meters depth. The summary of soil properties in the siltpond after the first phase of sandspreading is shown in Table 1. It can be seen that only a slight improvement of the parameters is evident.

Figure 13. Geotechnical Parameters vs. Depth after first phase of sand spreading (a) bulk density (b) liquidity index (c) water content &Atterberg limits (d) void ratio after sand spreading (e) compression index
(f)coefficient of consolidation (g)
0/5000
จาก: -
เป็น: -
ผลลัพธ์ (ไทย) 1: [สำเนา]
คัดลอก!
ปรับปรุงถมและดินบนดินที่อ่อนนุ่มเป็นพิเศษโดยChoa วิคเตอร์หนานหยางเทคโนโลยีมหาวิทยาลัย สิงคโปร์บทคัดย่อถมบนดินอ่อนนุ่มพิเศษเป็นเรื่องยากมากเนื่องจากความแข็งแรงต่ำความสูง compressibility ใช้โหลดช้า และมั่นคงเป็นสิ่งจำเป็นเพื่อรักษาเสถียรภาพของมูลนิธิ วิธีการถมบนดินที่อ่อนนุ่มเป็นพิเศษอธิบายไว้ในเอกสารนี้ การชำระเงินขนาดใหญ่มักจะเกิดขึ้นซึ่งไม่เป็นไปตามทฤษฎีต้องใช้ขนาดเล็กของ Terzaghi ไม่ชำระเงินขนาดใหญ่ซึ่งเกิดขึ้นในระยะเริ่มต้นของแมพทำให้กำไรในความเครียดที่มีประสิทธิภาพ เอกสารนี้นำเสนอกรณีศึกษาของการถมและปรับปรุงดินเป็นพิเศษนุ่มและแมพลักษณะของดินอ่อนนุ่มเป็นพิเศษหลังจากถม แนะนำ เนื่องจากการขาดแคลนที่ดินในเมืองชายฝั่ง งานถมจะดำเนินการขยายแผ่นดิน พื้นที่ที่ มีรากฐานที่ดีสำหรับถมจะกลายเป็นสิ่งที่หายากเช่นงานถมได้ทำบนใช่ดีมูลนิธิเช่นบ่อน้ำเสีย บ่อน้ำ และฝากห้องรูปแบบล่าสุดซึ่งยังอยู่ระหว่างรวมน้ำหนักตนเอง เนื่องจากเงินฝากดังกล่าวมี compressibility สูงและแรงเฉือนระยะ ถมนั้นเป็นเรื่องยากมาก เทคนิคพิเศษจะต้องถมของฝากชนิดนี้ นอกจากความยากลำบากในการถมในมูลนิธิดังกล่าว ก็ยังสนับสนุนใหญ่ชำระเมื่อของโหลดเพิ่มเติม การชำระเงินขนาดใหญ่มักเกิดขึ้นกับความเครียดที่มีประสิทธิภาพต่ำสุดกำไร แมพต้องใช้ขนาดใหญ่ชนิดนี้ไม่ไม่เป็น complyTerzaghi ขนาดเล็กต้องใช้ทฤษฎี เอกสารนี้อธิบายกรณีศึกษาในการปรับปรุงถมและดินบนดินที่อ่อนนุ่มเป็นพิเศษ ตรวจสอบเว็บไซต์และคุณสมบัติของดินอ่อนนุ่มเป็นพิเศษและการประเมินปรับปรุงดินนุ่มทันกาลจะกล่าวถึงยังตรวจสอบไซต์สำหรับดินอ่อนนุ่มเป็นพิเศษ เนื่องจากดินพิเศษอ่อนนุ่มเกินไปสำหรับ conventionl ฉันวิธีไซต์สอบสวน สุ่มตัวอย่างที่ดำเนินการกับแซมเพลอร์แบบบิดดังแสดงในรูปที่ 1 ทดสอบแรงเฉือน vane ฟิลด์ได้ดำเนินการกับใบมีดขนาดใหญ่เนื่องจากแรงเฉือนต่ำ ความหนาแน่นจำนวนมากถูกวัด ด้วยโพรบแกมมาแกมมา ตรวจสอบเว็บไซต์ที่ทำจากแพลอยแทนที่เป็นแจ็คขึ้นเรือได้กรณีศึกษาเพื่อแสดงให้เห็นถึงกระบวนการในการปรับปรุงดินและถมดินนุ่มพิเศษ มีเลือกกรณีศึกษาถม siltpond ที่สนามบินชางฮี สิงคโปร์ ที่ตั้งของ siltpond จะแสดงในรูปที่ 2รูปที่ 1 บิด asmplerรูปที่ 2 ตำแหน่งที่ตั้งของ siltpondคำอธิบายของ Siltpond ในระหว่างการถมทำงานสนามบินชางงี ระหว่างปี 1975 และ 1978 ยืมทรายสร้างหลุมในก้นทะเลเพื่อการยกระดับเกี่ยวกับ - m 22 CD (แผนภูมิวันที่โพส) ใน 1986 บันด์บรรจุทรายถูกสร้างขึ้นรอบ ๆ หลุมยืมนี้ Washings ตะกอนและดินจากกิจกรรมวางแผนการทำเหมืองหินทรายถูกขนส่งในท่อด้วยน้ำสูง และออกในพื้นที่ bunded บ่อภายได้ชื่อว่าเป็น siltpond Siltpond ถูก trapezoidal ในรูปร่าง และมีพื้นที่ประมาณ 180 เฮคเตอร์ วัดประมาณ 2000 เมตร ในความยาว และ 750 m และ 1050 เมตรในความกว้างที่ปลายทั้งสอง ความสูงของด้านบนของตะกอนแตกต่างกันจาก 0 ถึง - CD ระดับ 5 เมตรโดยเฉลี่ยที่ประมาณ-3 ถึง 4 เมตร CD ด้านบนของน้ำถูกนำมาเป็นยกที่ความหนาแน่นที่มากกว่า 1.1 Mg/m3 ความสูงของด้านล่างของน้ำแตกต่างกันจาก 0 ไป - ซีดีเอ็ม 22 โดยเฉลี่ยที่-12 ไป – ซีดี m 18 ความหนาของตะกอนแตกต่างกันจาก 1 ประมาณ 20 เมตรโดยเฉลี่ยประมาณ 10 เมตรถึง 15 เมตรของชนิดต่าง ๆ ของดินการตรวจสอบใน siltpond ที่แสดงในรูปที่ 3 Contour ของความลึกให้ความหนาแน่นหลายชั้นจะแสดงตัวเลข 4 ค่าความหนาแน่นปกติกำหนดบันทึกฟอร์มแกมมาแกมมาจะแสดงตัวเลข 5 รายละเอียดของ siltpond สามารถพบได้ในบ่อ et al., (1997) a, 1997b และ 1998)รูปที่ 3 ตำแหน่งของการตรวจสอบเว็บไซต์ใน siltpondรูปที่ 4. Isopach แผนที่โซน B (ความหนาแน่น 1.3 กับ 1.5)สมบัติของสารละลาย Siltpond ก่อนถมวัสดุ siltpond ก่อนถมประกอบด้วยของน้อยไปสูง plasticity ดิน (รูปที่ 6) ปริมาณน้ำได้สูงถึง 250 เปอร์เซ็นต์โดยเฉลี่ยร้อยละ 170 วัสดุยังคงถูกผ่าตัดรวมน้ำหนักตนเอง ความหนาแน่นของส่วนด้านบนของตะกอนมีเพียงเล็กน้อยอยู่เหนือความหนาแน่นของน้ำเค็ม ขนาดเมล็ดเฉลี่ยของตะกอน (D50) มีขนาดเล็กกว่า 3 microns และประมาณ 80 เปอร์เซ็นต์ของอนุภาคมีขนาดเล็กกว่า 63 microns (8 รูป) ความแข็งแรงของตัวประมาณ 80 เปอร์เซ็นต์ของอนุภาคมีขนาดเล็กกว่า 63 microns (รูปที่ 8) ความแรงของน้ำถูกเป็นต่ำสุด 0.5 kPa ที่ผิวดิน และเพิ่มความลึกที่ kPa เพียง 0.2 ต่อเมตร สรุปคุณสมบัติของวัสดุ siltpond จะแสดงขึ้นบนตารางที่ 1 คุณสมบัติเมื่อเทียบกับความลึกที่แสดงในรูปที่ 7 จะเห็นได้ในตัวเลขว่า วัสดุมีความหนาแน่นจำนวนมากเนื้อหา และต่ำมีความชื้นสูงมาก ความดัน preconsolidation ถูกมากต่ำกว่าความดัน overburden ที่ยืนยันว่า วัสดุไม่ รวมภายใต้ และการผ่าตัดยังคงน้ำหนักตนเองรวม ดัชนีสภาพคล่องลดลงกับความลึก ผลของความหนาแน่นล็อกยังแสดงให้เห็นว่า ความหนาแน่นเพิ่มขึ้นกับความลึก ยืนยันว่า รวมเริ่ม จากด้านล่าง มากกว่า จากพื้นผิว รายละเอียดของสารละลาย siltpond ได้อธิบายไว้ในบ่อและ al. (2001)ถม Siltpondทราย Phsae แรกที่แพร่กระจาย วัสดุที่พื้นผิวของ siltpond มีความนุ่มมาก และแทบไม่มีความแข็งแรงเฉือน ไฮดรอลิกไส้ตรงหรือถ่ายโอนข้อมูลของทรายบนรากฐานนี้นุ่มพิเศษไม่ได้ ทรายกระจายวิธีดังนั้นจึงมีการนำเสนอ ในวิธีนี้ ทรายถูกสูบผ่านท่อด้วยน้ำสูง และฝากเงินในรูปแบบหลวม ด้วยความหนาแน่นต่ำ Spreader ที่ใช้ทรายที่กระจายการทำงานจะแสดงในรูปที่ 9 คุณลักษณะการถ่ายภาพของ siltpond toreclamation ก่อนจะแสดงในรูปที่ 10รูปที่ 5 ค่าความหนาแน่นปกติรูปที่ 6. Siltpond วัสดุในการจัดประเภทแผนภูมิรูปที่ 7.ธรณีพารามิเตอร์ VS.depth ก่อนทรายแพร่กระจาย (ก) จำนวนมากความหนาแน่น (ข) สภาพคล่องดัชนี (ค) น้ำเนื้อหาและ Atterberg จำกัด (d) เริ่มต้นอัตราการยกเลิก (อี) รวมดัชนี (f) สัมประสิทธิ์ของรวมแรงดัน (g) preconsolidation (h) overconsolidattion อัตราส่วน (i) แรงเฉือนแรงจากฟิลด์ vane ทดสอบ (i) ความไวจากการทดสอบ vane ฟิลด์รูปที่ 8 เมล็ดขนาดการกระจายเส้นโค้ง ofsiltpond วัสดุตารางที่ 1 คุณสมบัติดิน siltpond ดิน ก่อนการถม และทรายแพร่กระจาย คุณสมบัติก่อนถมช่วงของค่าหลังจากทรายแพร่กระจายช่วงของค่าจำนวนมากความหนาแน่น (Mg/m3) 1.25-1.6 1.3-1.9ปริมาณน้ำ (%) 75 170 40-150ขีดจำกัดเหลว (%) 60-115 50-105พลาสติกจำกัด (%) 22-45 18-30เริ่มต้นอัตราการยกเลิก 2-4.5 2-3.5ความถ่วงจำเพาะ 2.66-2.7 2.5-2.7ดัชนีรวม 0.5-1.7 0.6-1.4Overconsolidation อัตรา 0.2-1.2 0.2-1.0∆Cu/∆p ' 0.078 0.094 ลำดับของทรายที่แพร่กระจายในบ่อตะกอนในระยะแรกประกอบด้วยแพร่ทรายในลิฟท์ 20 ซม.เท่า ๆ กันจนกว่าความหนาทรายรวมฝากได้ 2 เมตร บางช่วงเวลาเหลือที่ถูกต้องหลังจากยกละ 20 ซม.เพื่อให้มั่นใจเสถียรภาพของมูลนิธิ สำรวจ hydrographic ถูกดำเนินหลังจากแต่ละยกเพื่อตรวจสอบความหนาของทรายนำฝาก โพรไฟล์ hydrographic สำรวจหลังจากแต่ละขั้นตอนของทรายจะแสดงในรูปที่ 11 ทรายกระจายในระยะนี้ได้ดำเนินการเกี่ยวกับ 1 ซีดี m 0 ระดับความสูง รายละเอียดของวิธีการถมบน siltpond ได้อธิบายไว้อย่างกว้างขวางในบ่อและ at., 1998รูปที่ 9 Spreader ทรายที่ใช้ถม siltpondรูปที่ 10. Siltpond ก่อนถมรูป 11.สำรวจ Hydrographic โปรไฟล์หลังจากแต่ละขั้นตอนของรูป 12.เปรียบเทียบค่าความหนาแน่นหลังจากเฟสแรกของทรายตรวจสอบเว็บไซต์ในระหว่าง และหลัง จากระยะแรกของทราย เพื่อกำหนดสร้างขึ้นของทรายบนน้ำ และปรับปรุงสารละลายการตรวจสอบ กาล boreholes, vane ฟิลด์ทดสอบแรงเฉือน และความหนาแน่น loggings ได้ดำเนินการ พบสร้างค่าของทรายจะขึ้น 5.2 เมตร เพิ่มความหนาแน่น ที่ส่วนล่างของน้ำ แต่ไม่ได้อยู่ ที่ด้านบนของดินถูกตั้งข้อสังเกตในหลาย ๆ รูป 12 แสดงการเปรียบเทียบระหว่างความหนาแน่นปกติบันทึกผลก่อน และ หลังทรายแพร่กระจาย จะเห็นได้ว่า ส่วนล่างของสารละลายมีถึงขั้นดินขณะส่วนด้านบนยังอยู่ในระยะน้ำขึ้น ลักษณะของวัสดุภายใน siltpond หลังจากทรายแพร่กระจายประมาณ 0 m ซีแสดงใน (a) 13 ตัวเลขการ (เจ) มันสามารถเห็นได้ในตัวเลขที่แน่นจำนวนมากของดินเพิ่มขึ้นประมาณ 1.3 กับ 1.5 Mg/m3อย่างไรก็ตาม จากสภาพคล่อง ดัชนีเนื้อหาความชื้นด้านบน 10 เมตรนั้นยังคงอยู่เหนือขีดจำกัดของเหลว ยกเลิกอัตราส่วนลดลง ไปประมาณ 3-4 เมตร 10 ชั้นใน และประมาณ 2 หรือมากกว่าเล็กน้อยที่ระดับความลึกต่ำกว่า 10 เมตร ความดัน preconsolidation ของใหญ่ได้ยังต่ำกว่าความดันมีประสิทธิภาพ overburden เดิม (ไม่รวมการใช้งานเพิ่มเติมจากการเติมทรายใหม่) ระบุว่า ดินที่ถูกรวมบัญชีภายใต้ Overconsolidation อัตราส่วนวัสดุด้านล่างความสามัคคีได้ แรงเฉือน undrained วัด โดยการทดสอบ vane ฟิลด์ด้านล่าง kPa 5 kPa 2 ถึง 7 เมตรความลึกและ kPa 5 ถึง 7 ต่ำกว่า 7 เมตรความลึกโดยเฉลี่ยยังได้ สรุปคุณสมบัติดินใน siltpond หลังจากขั้นตอนแรกของ sandspreading จะแสดงในตารางที่ 1 จะเห็นได้ว่าเพียงเล็กน้อยปรุงพารามิเตอร์ชัดรูปที่ 13 ธรณีพารามิเตอร์เทียบกับความลึกหลังจากเฟสแรกทรายแพร่กระจาย (ก) จำนวนมากความหนาแน่น (ข) สภาพคล่องดัชนี (ค) น้ำเนื้อหาและ Atterberg จำกัดอัตราส่วน (d) ยกเลิกหลังจากทรายแพร่กระจายดัชนีรวม (e)(f) สัมประสิทธิ์ของรวม (กรัม)
การแปล กรุณารอสักครู่..
ผลลัพธ์ (ไทย) 2:[สำเนา]
คัดลอก!
RECLAMATION AND SOIL IMPROVEMENT ON ULTRA-SOFT SOIL
By
Victor Choa
Nanyang Technological University, Singapore
ABSTRACT
Reclamation on ultra-soft soil is extremely difficult due to its low strength and high compressibility. Slow and steady application of load is required in order to maintain the stability of the foundation. The method of reclamation on ultra-soft soil is described in this paper. Large settlement usually occurs which does not follow Terzaghi’s small strain theory. The large settlement which occurs in the initial stage of deformation does not lead to a gain in effective stress. This paper presents a case study of a reclamation and improvement of an ultra-soft soil and the deformation characteristic of the ultra-soft soil after reclamation.

INTRODUCTION
Due to a shortage of land in coastal cities, reclamation works are being carried out to expand the land. Areas with favourable foundation for reclamation are becoming scarce .As such reclamation works have to be carried out on non- favourable foundation such as waste pond, slurry pond and recently formed estuary deposits which are still undergoing self-weight consolidation. Since such deposits are very soft with high compressibility and negligible shear strength, reclamation on them are extremely difficult. Special techniques are required for reclamation of this type of deposit. In addition to the difficulties in reclamation on such foundation, it also contributes large settlement upon application of the additional load. Large settlement usually occurs with minimum effective stress gain. This type of large strain deformation does not complyTerzaghi’s small strain theory. This paper describes a case study on reclamation and soil improvement on ultra-soft soil. Site investigation and characterization of the ultra-soft soil and the interim assessment of the improvement of the ultra-soft soil are also discussed.

SITE INVESTIGATION FOR ULTRA-SOFT SOIL
Since ultra-soft soil is too soft for conventionl me methods of site investigation, sampling was carried out with a twist sampler as shown in Figure 1. Field vane shear tests were carried with bigger dimension blades due to the low shear strength. Bulk density were measured with Gamma-Gamma Probe. Site investigations had to be carried out from the floating pontoon rather than jack-up barge.

CASE STUDY
In order to demonstrate the process of reclamation and soil improvement of ultra-soft soil, a case study of reclamation of a siltpond at Changi, Singapore is chosen. The location of the siltpond is shown in Figure 2.



Figure 1. Twist asmpler




Figure 2. Location of siltpond

Description of the Siltpond
During the reclamation works for Changi Airport, between 1975 and 1978 the borrowing of sand created a pit in the seabed to an elevation of about -22 m CD (Chart Datum). In 1986, a containment sand bund was constructed around this borrow pit. Silt and clay washings from sand quarrying activities inland was transported in pipelines with high water content and discharged into the bunded area. The pond was locally named as the siltpond. The siltpond was trapezoidal in shape and had an area of about 180 hectares. It measured about 2000 m in length and 750 m and 1050 m in width at the two ends.
The elevation of the top of the sediment varied from 0 to -5 m CD with an average at about -3 to-4 m CD. The top of the slurry was taken as the elevation at which the density was greater than 1.1 Mg/m3 . The elevation of the bottom of the slurry varied from 0 to -22 m CD with an average at – 12 to – 18 m CD. The thickness of sediment varied from 1 to about 20 m with an average of about 10 m to 15 m. Location of various types of soil investigation in the siltpond shown in Figures 3. Contour of depth to various density layers are shown in Figures 4. A typical density profile determined form Gamma-Gamma logging is shown in Figures 5. Details of the siltpond can be found in Bo et al., (1997)a, 1997b and 1998).


Figure 3. Location of site investigation in siltpond

Figure 4.Isopach map of zone B (Density 1.3 to 1.5)




Characterization of the Siltpond Slurry Prior to Reclamation
The siltpond material prior to reclamation consisted of low to high plasticity clay (Figure 6 ). The water content was as high as 250 percent with an average of 170 percent. The material was still undergoing self-weight consolidation. The density of the top part of silt was only slightly above that of salt water density. The mean grain size of silt (D50) was smaller than 3 microns and about 80 percent of the particles were smaller than 63 microns (Figure 8). The strength of the about 80 percent of the particles were smaller than 63 microns (Figure 8). The strength of the slurry was as low as 0.5 kPa at the soil surface and increasing with depth at only 0.2 kPa per meter. A summary of the properties of the siltpond material is shown on
Table 1. The properties versus depth are shown in Figure 7. It can be seen in the figures that the material had a very high moisture content and low bulk density. The preconsolidation pressures were much lower than the overburden pressure which confirmed that the material was under-consolidated and still undergoing self-weight consolidation. The liquidity index decreased with depth. Results of density logging also showed that the density increased with depth. This confirmed that consolidation commenced from the bottom rather than from the surface. Details of siltpond slurry were described in Bo et al. (2001).

Reclamation of Siltpond
First Phsae Sand Spreading
The material at the surface of the siltpond was extremely soft and virtually no shear strength. Direct hydraulic filling or dumping of sand on this ultra-soft foundation was not possible. A sand spreading method was therefore proposed. In this method sand was pumped through pipelines with high water content and deposited in a loose form with low density. The spreader used in the sand spreading work is shown in Figure 9. The photographic features of siltpond prior toreclamation is shown in Figure 10.


Figure 5. Typical density profile

Figure 6.Siltpond material on classification chart

Figure 7.Geotechnical parameters VS.depth prior to sand spreading (a) bulk density (b) liquidity index (c) water content &Atterberg limit (d) initial void ratio (e) compression index (f) coefficient of consolidation (g) preconsolidation pressure (h) overconsolidattion ratio (i) shear strength from field vane test (i) sensitivity from field vane test


Figure 8. Grain size distribution curve ofsiltpond materials.


Table 1. Soil properties of siltpond clay prior to reclamation and after sand spreading
Properties Prior to Reclamation
Range of Values After sand spreading
Range of Values
Bulk Density (Mg/m3) 1.25-1.6 1.3-1.9
Water Content (%) 75-170 40-150
Liquid Limit (%) 60-115 50-105
Plastic Limit (%) 22-45 18-30
Initial Void Ratio 2-4.5 2-3.5
Specific Gravity 2.66-2.7 2.5-2.7
Compression Index 0.5-1.7 0.6-1.4
Overconsolidation Ratio 0.2-1.2 0.2-1.0
∆Cu/∆p’ 0.078 0.094

The sequence of sand spreading in the first phase in the silt pond consisted of evenly spreading sand in 20 cm lifts until the total sand thickness deposited was 2 m. A certain rest period was required after each 20 cm lift to ensure stability of the foundation. A hydrographic survey was carried out after each lift to verify the thickness of the deposited sand. Hydrographic survey profiles after each phase of sand spreading are shown in Figure 11. The sand spreading in this phase was carried out to an elevation of about-1 to 0 m CD. Details of the method of reclamation on siltpond was extensively described in Bo et at., 1998.


Figure 9. Sand spreader used in siltpond reclamation

Figure 10.Siltpond prior to reclamation

Figure 11.Hydrographic survey profile after each phase of spreading.

Figure 12.Comparison of density profile after first phase of sand spreading.
Site Investigation During and After First Phase of Sand Spreading
In order to determine the build up of sand on top of the slurry and to investigate the improvement of the slurry, interim boreholes, field vane shear tests and density loggings were carried out. The build up of sand were found to be up 5.2 meters. The increase in density at the bottom part of the slurry but not at the top of the soil were noted at several places. Figure 12 shows a comparison between typical density logging results before and after the sand spreading. It can be seen that the bottom portion of the slurry has reached the soil stage while the top portion was still in the slurry stage. Characteristics of the material inside the siltpond after sand spreading to about 0m CD are shown in Figures 13 (a) to (j)
It can be seen in the figures that the bulk densities of soil increased to about 1.3 to 1.5 Mg/m3.However from the liquidity index the moisture content in the top 10 meters was still above the liquid limit. The void ratio reduced to about 3 to 4 within the top 10 metes and to about 2 or slightly greater at depths below 10 meters. The preconsolidation pressures of most cases were still below the original effective overburden pressure (excluding the additional load from the new sand fill). This indicated that the soil was under consolidated. The overconsolidation ratio of the material was below unity. The undrained shear strength measured by field vane tests were still below 5 kPa with an average of 2 kPa up to 7 meters depth and 5 to 7 kPa below 7 meters depth. The summary of soil properties in the siltpond after the first phase of sandspreading is shown in Table 1. It can be seen that only a slight improvement of the parameters is evident.

Figure 13. Geotechnical Parameters vs. Depth after first phase of sand spreading (a) bulk density (b) liquidity index (c) water content &Atterberg limits (d) void ratio after sand spreading (e) compression index
(f)coefficient of consolidation (g)
การแปล กรุณารอสักครู่..
ผลลัพธ์ (ไทย) 3:[สำเนา]
คัดลอก!
ถมดินและการปรับปรุงดินอัลตร้า - นุ่มด้วย

วิกโช
Nanyang Technological University , สิงคโปร์
ถมดิน
ในนามธรรม Ultra อ่อนนุ่มจะยากมาก เนื่องจากมีความแข็งแรงต่ำและความสามารถสูง ช้าและมั่นคงของการโหลดเป็นสิ่งจำเป็นเพื่อที่จะรักษาเสถียรภาพของมูลนิธิ วิธีการเวนคืนที่ดินนุ่มเป็นพิเศษที่อธิบายไว้ในบทความนี้การตั้งถิ่นฐานขนาดใหญ่มักจะเกิดขึ้นที่ไม่ได้ติดตาม terzaghi ขนาดเล็กสายพันธุ์ทฤษฎี การตั้งถิ่นฐานขนาดใหญ่ซึ่งเกิดขึ้นในช่วงแรกของการไม่ก่อให้เกิดกำไรในความเครียดที่มีประสิทธิภาพ บทความนี้นำเสนอกรณีศึกษาการพัฒนาการเวนคืนและนุ่มพิเศษดินและรูปลักษณะของนุ่มพิเศษในดินหลังการเวนคืน

แนะนำเนื่องจากการขาดแคลนที่ดินในเมืองชายฝั่งที่ผลงานจะถูกดำเนินการเพื่อขยายดินแดน พื้นที่ที่มีรากฐานที่ดีสำหรับการเวนคืนจะกลายเป็นที่ขาดแคลน เช่น การงานจะดำเนินการในองค์กร มูลนิธิ เช่น บ่อดีบ่อ น้ำเสีย และเกิดขึ้นเมื่อเร็ว ๆนี้ , เงินฝากที่ยังคงได้รับการรวมน้ำหนักตนเองเนื่องจากเงินฝากดังกล่าวจะอ่อนมาก มีความสามารถสูง และไม่มีความต้านทานแรงเฉือนที่พวกเขาจะยากมาก เทคนิคพิเศษที่จำเป็นสำหรับการฟื้นฟูของเงินฝากประเภทนี้ นอกจากปัญหาในการเวนคืนในมูลนิธิดังกล่าว ก่อให้เกิดการทรุดตัวใหญ่กับการโหลดเพิ่มเติมมักจะเกิดขึ้นกับการตั้งถิ่นฐานขนาดใหญ่สุดที่มีความเครียดที่ได้รับ ของการเสียรูปขนาดใหญ่ความเครียดชนิดนี้ไม่ complyterzaghi ขนาดเล็กสายพันธุ์ทฤษฎี กระดาษนี้จะอธิบายถึงกรณีการเวนคืนที่ดินและการปรับปรุงดินอัลตร้านุ่ม การตรวจสอบเว็บไซต์และคุณสมบัติของดินและการประเมินนุ่มพิเศษชั่วคราวของการปรับปรุงของนุ่มพิเศษดิน

ยังกล่าวถึงเว็บไซต์ตรวจสอบอัลตร้า - นุ่มดิน
ตั้งแต่ Ultra ดินอ่อนนุ่มเกินไปสำหรับผม conventionl วิธีการสืบสวนเว็บไซต์ ทดลองกับบิดตัวอย่างดังแสดงในรูปที่ 1 สนามทดสอบกำลังรับแรงเฉือนด้วยใบพัดขนาดใบใหญ่ เนื่องจากการต่ำ แรงเฉือน ความหนาแน่นถูกวัดด้วยแกมมาแกมมาด้วยการตรวจสอบเว็บไซต์ต้องถูกหามออกมาจากลอยโป๊ะมากกว่าแจ็คขึ้น เรือ


กรณีศึกษาเพื่อแสดงให้เห็นกระบวนการของการเวนคืนและการปรับปรุงดินพิเศษดินอ่อน กรณีศึกษาของการเวนคืนของ siltpond ที่ชางงี สิงคโปร์ เป็นผู้ถูกเลือก สถานที่ตั้งของ siltpond จะแสดงในรูปที่ 2



รูปที่ 1 บิด asmpler




รูปที่ 2 สถานที่ตั้งของ siltpond

รายละเอียดของ siltpond
ในระหว่างการทำงานสนามบินชางกี ระหว่าง 2518 และ 2521 ยืมทรายสร้างหลุมในทะเลถึงระดับความสูงประมาณ 22 เมตร - ซีดี ( แผนภูมิ Datum ) ใน 1986 , บรรจุทรายที่ถูกสร้างขึ้นในรอบนี้ ยืมมันทรายแป้งและดินเหนียวจากแหล่งทรายหินกิจกรรม washings ถูกขนส่งในท่อที่มีปริมาณน้ำสูง และโรงพยาบาลในพื้นที่ bunded . บ่ออยู่ในนาม siltpond . การ siltpond เป็นสี่เหลี่ยมคางหมูในรูปทรงและมีพื้นที่ประมาณ 180 ไร่ มันวัดได้ประมาณ 2 , 000 เมตร ยาว 750 เมตร และ 1 , 050 เมตร และความกว้างที่ปลายทั้งสอง .
การแปล กรุณารอสักครู่..
 
ภาษาอื่น ๆ
การสนับสนุนเครื่องมือแปลภาษา: กรีก, กันนาดา, กาลิเชียน, คลิงออน, คอร์สิกา, คาซัค, คาตาลัน, คินยารวันดา, คีร์กิซ, คุชราต, จอร์เจีย, จีน, จีนดั้งเดิม, ชวา, ชิเชวา, ซามัว, ซีบัวโน, ซุนดา, ซูลู, ญี่ปุ่น, ดัตช์, ตรวจหาภาษา, ตุรกี, ทมิฬ, ทาจิก, ทาทาร์, นอร์เวย์, บอสเนีย, บัลแกเรีย, บาสก์, ปัญจาป, ฝรั่งเศส, พาชตู, ฟริเชียน, ฟินแลนด์, ฟิลิปปินส์, ภาษาอินโดนีเซี, มองโกเลีย, มัลทีส, มาซีโดเนีย, มาราฐี, มาลากาซี, มาลายาลัม, มาเลย์, ม้ง, ยิดดิช, ยูเครน, รัสเซีย, ละติน, ลักเซมเบิร์ก, ลัตเวีย, ลาว, ลิทัวเนีย, สวาฮิลี, สวีเดน, สิงหล, สินธี, สเปน, สโลวัก, สโลวีเนีย, อังกฤษ, อัมฮาริก, อาร์เซอร์ไบจัน, อาร์เมเนีย, อาหรับ, อิกโบ, อิตาลี, อุยกูร์, อุสเบกิสถาน, อูรดู, ฮังการี, ฮัวซา, ฮาวาย, ฮินดี, ฮีบรู, เกลิกสกอต, เกาหลี, เขมร, เคิร์ด, เช็ก, เซอร์เบียน, เซโซโท, เดนมาร์ก, เตลูกู, เติร์กเมน, เนปาล, เบงกอล, เบลารุส, เปอร์เซีย, เมารี, เมียนมา (พม่า), เยอรมัน, เวลส์, เวียดนาม, เอสเปอแรนโต, เอสโทเนีย, เฮติครีโอล, แอฟริกา, แอลเบเนีย, โคซา, โครเอเชีย, โชนา, โซมาลี, โปรตุเกส, โปแลนด์, โยรูบา, โรมาเนีย, โอเดีย (โอริยา), ไทย, ไอซ์แลนด์, ไอร์แลนด์, การแปลภาษา.

Copyright ©2024 I Love Translation. All reserved.

E-mail: