packages (Long et al. 1999, Stamatopoulos et al. 2003,
EUROCONTROL 2001) that perform both capacity
and delay analyses and, in the instance of the last
two references, include models of aprons and aircraft
stands. After some necessary enhancements and an
adequate amount of testing in a variety of airport
environments, packages of this type may provide airport
planners within a few years with an easy-to-use
and very fast set of tools for the study of a host of
airside issues.
4.1.2. Airside Simulations. General-purpose simulation
models of airside operations first became
viable in the early 1980s and have been vested with
increasingly sophisticated features since then. Three
models currently dominate this field internationally:
SIMMOD, The Airport Machine, and the Total Airport
and Airspace Modeler (TAAM). A report by
Odoni et al. (1997) contains detailed reviews (somewhat
out-of-date by now) of these and several other
airport and airspace simulation models and assesses
the strengths and weaknesses of each. At their current
state of development (and in the hands of expert
users), they can be powerful tools in studying detailed
airside design issues, such as figuring out the best
way to remove an airside bottleneck or estimating the
amount by which the capacity of an airport is reduced
due to the crossing of active runways by taxiing
aircraft.
Unfortunately, these models are frequently misused
in practice, at great cost to the client organization.
This happens when they are applied to the study
of “macroscopic” issues that can have only approximate
answers because of the uncertainty inherent in
the input data. An example is a question that often
confronts airport operators: When will airside delays
reach a level that will require a major expansion of an
airport’s capacity (e.g., through the construction of a
new runway)? Questions of this type, often requiring
a look far into the future, are best answered through
the approximate analytical models surveyed earlier,
which permit easy exploration of a large number of
alternative scenarios and hypotheses. Detailed simulation
models, by contrast, cannot cope well with the
massive uncertainty involved because they require
inputs that are difficult to produce (e.g., a detailed
schedule of aircraft movements at the airport for a
typical day 10 or 15 years hence) and lack credibility
under the circumstances.
4.1.3. Optimizing Airside Operations. The airside
models discussed so far are descriptive in nature.
Their objective is to help users understand and predict
the operational characteristics of the various
airside facilities under different operating scenarios.
A considerable amount of OR work with an optimization
focus also exists, much of it concerned with the
effective use of runway systems.
The capacity of a runway is largely determined
by the separation requirements specified by the
providers of ATM services (e.g., the FAA in the United
States). For any pair of consecutive runway operations
these requirements depend on the type of aircraft
involved. For example, in the United States,
when an arriving “heavy” (H) aircraft—defined as
one with a maximum takeoff weight (MTOW) greater
than 255,000 lbs—is immediately followed by an arriving
“small” (S) aircraft (MTOW < 41,000 lbs), the
required separation between them, at the instant
when H is about to touch down on the runway, is
6 nautical miles (∼10.9 km). This is because “heavy”
aircraft (wide-body jets) may generate severe wake
turbulence, which may be hazardous to other aircraft
behind it. By contrast, when an aircraft of type Sis
followed by one of type H, the required separation is
2.5 nautical miles (∼4.5 km). Note that given a number
n of aircraft, all waiting to land on a runway,
the problem of determining the sequence of landings,
such that the time when the last aircraft lands is minimized,
is a Hamiltonian path problem with n points.
However, this is only a static version of a problem
which in truth is a dynamic one: Over time the
pool of aircraft available to land changes, as some
aircraft reach the runway while new aircraft join
the arrivals queue. Moreover, minimizing the “latest
landing time” (or maximizing “throughput”) should
not necessarily be the objective of optimal sequencing.
Many alternative objective functions, such as minimizing
the average waiting time per passenger, are
just as reasonable. A further complication is that the
very idea of “sequencing” runs counter to the traditional
adherence of ATM systems to a first-come,
first-served (FCFS) discipline. Deviations from FCFS
raise concerns among some airside users about the
แพคเกจ ( ยาว et al . 1999 stamatopoulos et al . 2003 ,
eurocontrol 2001 ) ที่แสดงทั้งความสามารถ
และการวิเคราะห์ข้อมูลล่าช้าและในอินสแตนซ์ของสุดท้าย
2 อ้างอิง รวมถึงรูปแบบของผ้ากันเปื้อนและอากาศยาน
ยืน หลังจากการปรับปรุงที่จำเป็นและจำนวนเงินที่เพียงพอของ
การทดสอบในสภาพแวดล้อมที่หลากหลาย สนามบิน
แพคเกจชนิดนี้อาจให้สนามบิน
วางแผนภายในไม่กี่ปีด้วยง่ายต่อการใช้งานและรวดเร็วมาก
ชุดของเครื่องมือสำหรับการโฮสต์ของปัญหา airside
.
4.1.2 . จำลอง airside . แบบจำลอง
วัตถุประสงค์ทั่วไปของการดำเนินงานเป็นครั้งแรก
airside ได้ในต้นทศวรรษ 1980 และได้รับผลประโยชน์กับ
คุณสมบัติที่ซับซ้อนมากขึ้นตั้งแต่นั้นมา 3
รุ่นปัจจุบันครองด้านนี้ในระดับสากล simmod :
,สนามบินเครื่องและรวมสนามบิน
น่านฟ้าและ Modeler ( ถาม ) รายงานโดย
odoni et al . ( 1997 ) มีรีวิวละเอียด ( ค่อนข้าง
ล้าสมัยแล้ว ) ของเหล่านี้และหลายอื่น ๆและรูปแบบจำลองสนามบิน
น่านฟ้าและประเมินจุดแข็งและจุดอ่อนของแต่ละคน ในสถานะปัจจุบันของพวกเขา
พัฒนา ( และในมือของผู้ใช้ผู้เชี่ยวชาญ
)พวกเขาสามารถเป็นเครื่องมือที่มีประสิทธิภาพในการศึกษาปัญหาการออกแบบ airside รายละเอียด
เช่น การหาวิธีที่ดีที่สุดเพื่อลบ airside คอขวด หรือยอดประเมิน
ซึ่งศักยภาพของสนามบินจะลดลง
เนื่องจากข้ามสะพาน โดยงาน taxiing
แต่เครื่องบิน โมเดลเหล่านี้มักใช้ผิด
ในการปฏิบัติ ที่ค่าใช้จ่ายที่ดีในองค์กรลูกค้า
นี้เกิดขึ้นเมื่อพวกเขาจะใช้เพื่อการศึกษา
" ประเด็นทาง " ที่สามารถมีเพียงประมาณ
คำตอบเพราะความไม่แน่นอนในตัว
ข้อมูลเริ่มต้น ตัวอย่างคำถามที่มักจะ
confronts ผู้ประกอบการสนามบิน : เมื่อจะ airside ความล่าช้า
ถึงระดับนั้นจะต้องมีการขยายใหญ่ของความจุการ
สนามบิน ( เช่นที่ผ่านการก่อสร้างของ
รันเวย์ใหม่ )คำถามประเภทนี้มักจะต้อง
มองไกลไปในอนาคต ที่ดีที่สุดตอบผ่าน
ประมาณแบบจำลองเชิงวิเคราะห์สำรวจก่อนหน้านี้ ซึ่งอนุญาตให้มีการสำรวจที่ง่ายของตัวเลขขนาดใหญ่ของ
สถานการณ์ทางเลือกและสมมติฐาน องรายละเอียด
รุ่นโดยทางไม่สามารถรับมือได้ดี
ใหญ่ไม่แน่นอนเพราะพวกเขาต้องใช้ปัจจัยการผลิตที่ยากต่อการผลิต ( เช่นตารางเวลารายละเอียด
การเคลื่อนไหวของอากาศยานที่สนามบินสำหรับ
ทั่วไปวันที่ 10 หรือ 15 ปี ดังนั้น ) และความน่าเชื่อถือขาดภายใต้สถานการณ์
.
4.1.3 . การเพิ่มประสิทธิภาพการดําเนินงาน airside . การ airside
รุ่นกล่าวถึงเพื่อให้ห่างไกลเป็นคำอธิบายในธรรมชาติ
วัตถุประสงค์ของพวกเขาเป็นเพื่อช่วยให้ผู้ใช้เข้าใจและทำนายลักษณะการดำเนินงานของ
ต่าง ๆairside เครื่องภายใต้สถานการณ์ที่แตกต่างกันระบบปฏิบัติการ .
จํานวนมาก หรือทำงานกับการหาโฟกัส
ยังมีอยู่มาก มันเกี่ยวข้องกับการใช้งานที่มีประสิทธิภาพของระบบทางวิ่ง
.
ความจุของรันเวย์ถูกกําหนดโดยการแยกความต้องการที่ระบุด้วย
ผู้ให้บริการเอทีเอ็ม ( เช่น การบินใน สหรัฐ
สหรัฐอเมริกา ) สำหรับคู่ใด ๆของการติดต่อกัน
รันเวย์ความต้องการเหล่านี้ขึ้นอยู่กับชนิดของเครื่องบิน
เกี่ยวข้อง ตัวอย่างเช่นในสหรัฐอเมริกา
เมื่อมาถึง " หนัก " ( H ) อากาศยาน เช่น
หนึ่งที่มีน้ำหนักบินขึ้นสูงสุด ( mtow ) มากขึ้น
กว่า 255000 ปอนด์ทันทีตามด้วยมาถึง
" เล็ก " ( s ) เครื่องบิน ( mtow < 41 , 000 ปอนด์ ) ,
ต้องแยกระหว่างพวกเขา ในทันที
เมื่อ H กำลังจะสัมผัสลงบนทางวิ่ง คือ
6 ไมล์ทะเล ( ∼ 10.9 km ) นี้เป็นเพราะ " หนัก "
อากาศยาน ( เครื่องบินร่างกายกว้าง ) อาจสร้างความปั่นป่วนตื่น
อย่างรุนแรงซึ่งอาจเป็นอันตรายต่อเครื่องบิน
อื่น ๆที่อยู่เบื้องหลังมัน ในทางตรงกันข้าม เมื่อเครื่องบินประเภทพี่
ตามด้วยหนึ่งในประเภท H , ต้องแยกเป็น
2.5 ไมล์ทะเล ( ∼ 4.5 km ) ทราบว่าได้รับหมายเลข
n ของเครื่องบินทั้งหมดรอที่ดินบน runway
ปัญหาของการกำหนดลำดับของ landings
เช่นเวลา , ที่ดินอากาศยานสุดท้ายลด
เป็นปัญหาเส้นทาง Hamiltonian
n จุด อย่างไรก็ตาม นี้เป็นเพียงรุ่นที่สถิตของปัญหา
ซึ่งในความจริงเป็นแบบไดนามิกหนึ่ง : ช่วงเวลา
Pool ของเครื่องบินที่มีการเปลี่ยนแปลงที่ดิน เป็นบาง
เครื่องบินจะถึงรันเวย์ ขณะที่เครื่องบินใหม่เข้าร่วม
มาถึงคิว นอกจากนี้ลดเวลาลงล่าสุด
" ( หรือ " throughput สูงสุด " ) ควร
ไม่จําเป็นต้องมีการจัดลำดับที่เหมาะสม .
ฟังก์ชันวัตถุประสงค์อื่นมาก เช่น การลดเวลารอคอยเฉลี่ย ต่อผู้โดยสาร
,
อย่างสมเหตุสมผล ภาวะแทรกซ้อนต่อไปก็คือ
ความคิดมากของ " ลำดับ " วิ่งสวนทางกับการแบบดั้งเดิมของระบบ ATM ให้
แรกมาเสิร์ฟแรก ( ก่อน ) วินัย การเบี่ยงเบนจากยกความกังวลในหมู่ผู้ใช้บางส่วนก่อน
airside เกี่ยวกับ
การแปล กรุณารอสักครู่..
