As the second essential trace element in human body, copper plays vital roles in metabolism and antimicrobial. Therefore, synthesis of copper-substituted hydroxyapatite (Cu-HA) is expected to create bioceramics with improved biological and antimicrobial properties. In this study, Cu-HA was prepared by hydrothermal reactions using Ca(NO3)(2)center dot 4H(2)O, Cu(NO3)(2)center dot 3H(2)O and Na2HPO4 center dot 12H(2)O. Products were characterized by scanning electron microscope, transmission electron microscope, X-ray diffiaction, Fourier transform infrared spectroscope and atomic absorption spectrometry. Results show that copper is incorporated into the HA crystals. Correspondingly, the products retain HA structure but their morphologies transform from ribbons to flower-like microspheres. Moreover, when Cu/(Cu+Ca) (molar ratio) of the reaction solution is greater than 0.05, the thermal stability of the HA product is decreased