Virtual Memory Architecture for x86 Platforms
The memory architecture of the x86 and x86-64 chipsets has changed significantly since its inception; however, the default memory page size has not changed. This can result in inefficiency and excessive overhead when large amounts of memory are used for large applications, such as databases.
The x86 architecture is a virtual memory architecture, which allows for more memory to be addressed than is physically available in the hardware. This is accomplished by allowing each process to have its own memory that it can address. The process believes that this memory is available to it for its use. This is known as the process's virtual memory. In reality, this memory can be either physical memory that is actually residing on the RAM chips, or it can be stored in a dedicated area on physical disk, which is known as the swap or paging area.
The process does not know whether the virtual memory is stored in RAM or on disk; the memory is managed by the OS. If more memory is needed than is physically available, the OS will move some memory out to the paging area. This activity is very inefficient and is a common cause of performance problems. Since disk is many times slower than RAM, a process that is "paging" will experience significant performance problems.