Ship Stability - Movement of the Centre of GravityCentre of gravityIt  การแปล - Ship Stability - Movement of the Centre of GravityCentre of gravityIt  ไทย วิธีการพูด

Ship Stability - Movement of the Ce

Ship Stability - Movement of the Centre of Gravity

Centre of gravity
It is the point of a body at which all the mass of the body may be assumed to be concentrated.

The force of gravity acts vertically downwards from this point with a force equal to the weight of the body.

Basically the body would balance around this point.

The COG of a homogeneous body is at its geometrical centre.

Effect of removing or discharging mass

shifting cargo1shifting cargo12

Consider a rectangular plank as shown. The effects of adding or removing weights would be as shown:

Now cut the length of plank of mass ‘w’ kg whose CG is ‘d’ mtrs away from CG of the plank.

Note that a resultant moment of ‘w x d’ kg m has been created in an anti-clockwise direction about ‘G’.

The CG of the new plank shifts from ‘G’ to ‘G1’.

The new mass (W-w) kg now creates a tilting moment of (W-w) x GG1 about G.

Since both are referring to the same moment,

(W-w) x GG1 = w x d

GG1 = (w x d)/(W-w)

CONCLUSION: When a weight is removed from a body, the CG shifts directly away from the CG of the mass removed, and the distance it moves is given by:

GG1 = (w x d)/Final mass metres

Where, GG1 is the shift of CG

w is the mass removed

d is the distance between the CG of the mass removed and the CG of the body.

Effect of adding or loading mass

Equating the tilting moments created due to the added weight, which must again be equal:

(W + w) x GG1 = w x d

GG1 = (w x d)/(W + w)

GG1 = (w x d)/ (Final mass) metres



Application to ships

DISCHARGING WEIGHTS:

GG1 = (w x d) / (Final displacement) metres



LOADING WEIGHTS

GG1 = (w x d) / (Final displacement) metres



Shifting Weights

GG2 = (w x d) / (Displacement) metres



Vertical Weight Shifts

Shifting weight vertically, no matter where onboard it is, will always cause the ship’s center of gravity to move in the same direction as the weight shift.

shifting cargo2

To calculate the height of the ship’s center of gravity after a vertical weight shift, the following equation is used:

KG1 = ((W0 x KG0) +/- (w x kg)) / ΔF

KGO = The original height of the ship’s center of gravity (M)

Δo = The ship’s displacement prior to shifting weight (MT)

w = The amount of weight shifted (MT)

kg = The vertical distance the weight was shifted (M)

ΔF = The ship’s displacement after shifting the weight (MT)

(+) When the weight is shifted up use (+)

(-) When the weight is shifted down use (-)

Example Problem

10 MT of cargo is shifted up 3 M. ΔO is 3500 MT and KGo is 6 M. What is the new height of the ship’s center of gravity (KG1)?

KG1 = ((Δo x KGo) +/- (w x kg)) / ΔF

KG1 = ((3500 x 6) + (10 x 3)) / 3500

KG1 = 6.009 M



Vertical Weight Additions/Removals

When weight is added or removed to/from a ship, the vertical shift in the center of gravity is found using the same equation.

shifting cargo3

KG1 = ((Δo x KGo) +/- (w x kg)) / ΔF

KGO = The original height of the ship’s center of gravity (M)

ΔO = Ship’s displacement prior to adding/removing weight (MT)

w = The amount of weight added or removed (MT)

kg = The height of the center of gravity of the added/removed weight above the keel (M)

ΔF = The ship’s displacement after adding/removing the weight

(+) When the weight is added use (+)

(-) When the weight is removed use (-)

Example Problem

A 30 MT crate is added 10 M above the keel. Δo is 3500 MT and KG0 is 6 M. What is the new height of the ship’s center of gravity (KG1)?

KG1 = ((Δo x KGo) +/- (w x kg)) / ΔF

KG1 = ((3500 x 6) + (30 x 10)) / 3530

KG1 = 6.034 M

Horizontal Weight Shifts

Shifting weight horizontally, no matter where onboard it is, will always cause the ship’s center of gravity to move in the same direction as the weight shift.

NOTE: A weight shift causing the ship’s center of gravity to move off centerline will always reduce the stability of the ship.

shifting cargo4

To calculate the horizontal movement of the ship’s center of gravity, the following equation is used:

GG2 = (w x d) / ΔF

w = The amount of weight shifted (MT)

d = The horizontal distance the weight is shifted (M)

ΔF = The ship’s displacement after the weight is shifted (MT)

Example Problem

A 50 MT weight is shifted 10 M to starboard. ΔO is 32000 MT.

What is the change in the center of gravity (GG2)?

GG2 = (w x d) / ΔF

GG2 = (50 x 10) / 32000

GG2 = 0.01562 M



Horizontal Weight Additions/Removals

When an off-center weight is added or removed to/from a ship, the ship’s center of gravity will move off centerline, the ship will develop a list.

shifting cargo5

To calculate the horizontal movement of the ship’s center of
0/5000
จาก: -
เป็น: -
ผลลัพธ์ (ไทย) 1: [สำเนา]
คัดลอก!
Ship Stability - Movement of the Centre of GravityCentre of gravityIt is the point of a body at which all the mass of the body may be assumed to be concentrated.The force of gravity acts vertically downwards from this point with a force equal to the weight of the body.Basically the body would balance around this point.The COG of a homogeneous body is at its geometrical centre.Effect of removing or discharging massshifting cargo1shifting cargo12Consider a rectangular plank as shown. The effects of adding or removing weights would be as shown:Now cut the length of plank of mass ‘w’ kg whose CG is ‘d’ mtrs away from CG of the plank.Note that a resultant moment of ‘w x d’ kg m has been created in an anti-clockwise direction about ‘G’.The CG of the new plank shifts from ‘G’ to ‘G1’.The new mass (W-w) kg now creates a tilting moment of (W-w) x GG1 about G.Since both are referring to the same moment, (W-w) x GG1 = w x d GG1 = (w x d)/(W-w)CONCLUSION: When a weight is removed from a body, the CG shifts directly away from the CG of the mass removed, and the distance it moves is given by: GG1 = (w x d)/Final mass metresWhere, GG1 is the shift of CG w is the mass removed d is the distance between the CG of the mass removed and the CG of the body.Effect of adding or loading massEquating the tilting moments created due to the added weight, which must again be equal: (W + w) x GG1 = w x d GG1 = (w x d)/(W + w) GG1 = (w x d)/ (Final mass) metres Application to shipsDISCHARGING WEIGHTS:GG1 = (w x d) / (Final displacement) metres LOADING WEIGHTSGG1 = (w x d) / (Final displacement) metres Shifting WeightsGG2 = (w x d) / (Displacement) metres Vertical Weight ShiftsShifting weight vertically, no matter where onboard it is, will always cause the ship’s center of gravity to move in the same direction as the weight shift.shifting cargo2To calculate the height of the ship’s center of gravity after a vertical weight shift, the following equation is used:KG1 = ((W0 x KG0) +/- (w x kg)) / ΔFKGO = The original height of the ship’s center of gravity (M)Δo = The ship’s displacement prior to shifting weight (MT)w = The amount of weight shifted (MT)kg = The vertical distance the weight was shifted (M)ΔF = The ship’s displacement after shifting the weight (MT)(+) When the weight is shifted up use (+)(-) When the weight is shifted down use (-)Example Problem10 MT of cargo is shifted up 3 M. ΔO is 3500 MT and KGo is 6 M. What is the new height of the ship’s center of gravity (KG1)?KG1 = ((Δo x KGo) +/- (w x kg)) / ΔFKG1 = ((3500 x 6) + (10 x 3)) / 3500KG1 = 6.009 M Vertical Weight Additions/RemovalsWhen weight is added or removed to/from a ship, the vertical shift in the center of gravity is found using the same equation.shifting cargo3KG1 = ((Δo x KGo) +/- (w x kg)) / ΔFKGO = The original height of the ship’s center of gravity (M)ΔO = Ship’s displacement prior to adding/removing weight (MT)w = The amount of weight added or removed (MT)kg = The height of the center of gravity of the added/removed weight above the keel (M)ΔF = The ship’s displacement after adding/removing the weight(+) When the weight is added use (+)(-) When the weight is removed use (-)Example ProblemA 30 MT crate is added 10 M above the keel. Δo is 3500 MT and KG0 is 6 M. What is the new height of the ship’s center of gravity (KG1)?KG1 = ((Δo x KGo) +/- (w x kg)) / ΔFKG1 = ((3500 x 6) + (30 x 10)) / 3530KG1 = 6.034 MHorizontal Weight ShiftsShifting weight horizontally, no matter where onboard it is, will always cause the ship’s center of gravity to move in the same direction as the weight shift.NOTE: A weight shift causing the ship’s center of gravity to move off centerline will always reduce the stability of the ship.shifting cargo4To calculate the horizontal movement of the ship’s center of gravity, the following equation is used:GG2 = (w x d) / ΔFw = The amount of weight shifted (MT)d = The horizontal distance the weight is shifted (M)ΔF = The ship’s displacement after the weight is shifted (MT)Example ProblemA 50 MT weight is shifted 10 M to starboard. ΔO is 32000 MT.What is the change in the center of gravity (GG2)?GG2 = (w x d) / ΔFGG2 = (50 x 10) / 32000GG2 = 0.01562 M Horizontal Weight Additions/RemovalsWhen an off-center weight is added or removed to/from a ship, the ship’s center of gravity will move off centerline, the ship will develop a list.shifting cargo5To calculate the horizontal movement of the ship’s center of
การแปล กรุณารอสักครู่..
ผลลัพธ์ (ไทย) 3:[สำเนา]
คัดลอก!
ความมั่นคง - เรือเคลื่อนไหวของศูนย์ของแรงโน้มถ่วงศูนย์ของแรงโน้มถ่วงมันเป็นจุดของร่างกายที่ซึ่งทั้งหมดมวลของร่างกายอาจจะถือว่ามีความเข้มข้นแรงโน้มถ่วงของการดิ่งลงจากจุดนี้ด้วยความแรงเท่ากับน้ำหนักของร่างกายโดยทั่วไปร่างกายจะสมดุลอยู่จุดนี้ที่ฟันเฟืองของร่างกายซึ่งเป็นที่ทรงศูนย์ผลของการลบหรือการปลดปล่อยมวลเปลี่ยน cargo1shifting cargo12พิจารณาแผ่นสี่เหลี่ยม ดังรูป ผลของการเพิ่มหรือลบน้ำหนักจะแสดงเป็น :ตอนนี้ตัดความยาวของไม้ของมวล " w " กก. ที่มี CG " D " ให้เช่าห่างจาก CG ของไม้กระดานทราบว่า ช่วงเวลาดังกล่าว " W x D " กิโลกรัมเมตร ถูกสร้างขึ้นในทิศทางตามเข็มนาฬิกา anti เรื่อง " g "CG ของไม้กระดานกะใหม่จาก " g " " G1 "มวลใหม่ ( w-w ) กก. ตอนนี้สร้างเอียงเวลา ( w-w ) x gg1 เกี่ยวกับ Gเนื่องจากทั้งสองมีการอ้างถึงช่วงเวลาเดียวกัน( w-w gg1 = W x D ) xgg1 = ( W x D ) / ( w-w )สรุป : เมื่อน้ำหนักจะถูกเอาออกจากร่างกาย , CG กะตรงห่างจาก CG ของมวลออก และระยะทางจะได้รับ :gg1 = ( W x D ) / เมตร มวลสุดท้ายที่ gg1 กะของ CG , คือW คือมวลลบออกD คือ ระยะทางระหว่าง CG ของมวลลบและ CG ของร่างกายผลของการเพิ่มน้ำหนักมวลหรือปรับการเอียงช่วงเวลาสร้างเนื่องจากการเพิ่มน้ำหนักซึ่งต้องอีกเป็นเท่า :( W + W ) x gg1 = W x Dgg1 = ( W x D ) / ( W + W )gg1 = ( W x D ) / ( มวลสุดท้าย ) เมตรโปรแกรมเรือปล่อยน้ำหนัก :gg1 = ( W x D ) / ( การกระจัดสุดท้าย ) เมตรโหลดน้ำหนักgg1 = ( W x D ) / ( การกระจัดสุดท้าย ) เมตรเปลี่ยนน้ำหนักgg2 = ( W x D ) / ( การเคลื่อนที่ ) เมตรกะน้ำหนักในแนวดิ่งขยับน้ำหนักแนวตั้ง ไม่ว่าจะอยู่ที่ไหน บน มัน จะเสมอ เพราะเป็นจุดศูนย์กลางของแรงโน้มถ่วงเรือไปในทิศทางเดียวกัน เช่น น้ำหนัก กะเปลี่ยน Cargo2คำนวณความสูงของศูนย์ของแรงโน้มถ่วงเรือหลังจากเปลี่ยนน้ำหนักแนวตั้ง ใช้สมการต่อไปนี้ :kg1 = ( ( W0 x kg0 ) + / - ( W x กิโลกรัม ) / Δ FKGO = เดิม ความสูงของศูนย์ของแรงโน้มถ่วง ( M ) เรือΔ O = การเคลื่อนที่ของเรือก่อนที่จะขยับน้ำหนัก ( MT )W = ปริมาณของน้ำหนักตัว ( MT )กิโลกรัม = ระยะทางแนวตั้งน้ำหนักถูกย้าย ( M )Δ F = เรือแทนที่หลังจากเปลี่ยนน้ำหนัก ( MT )( + ) เมื่อน้ำหนักตัวขึ้นใช้ ( + )( - ) เมื่อน้ำหนักขยับลงมาใช้ ( - )ตัวอย่างปัญหา10 ตันของสินค้าขยับขึ้น 3 เมตร เป็น 3 , 500 ตัน และΔ o KGO 6 เมตรมีความสูงใหม่ของศูนย์ของยานของแรงโน้มถ่วง ( kg1 )kg1 = ( ( Δ O X KGO ) + / - ( W x กิโลกรัม ) / Δ Fkg1 = ( ( 3 , 500 x 5 ) + ( 10 x 3 / 3 )kg1 = 6.009 ม.น้ำหนักเพิ่ม / เอาออกในแนวตั้งเมื่อน้ำหนักเพิ่มหรือลบออกไปจากเรือ , กะแนวตั้งในศูนย์ของแรงโน้มถ่วงจะพบได้โดยใช้สมการเดียวกันเปลี่ยน cargo3kg1 = ( ( Δ O X KGO ) + / - ( W x กิโลกรัม ) / Δ FKGO = เดิม ความสูงของศูนย์ของแรงโน้มถ่วง ( M ) เรือΔ O = การเคลื่อนที่ของเรือก่อนที่จะมีการเพิ่ม / ลบน้ำหนัก ( MT )W = ปริมาณของน้ำหนักที่เพิ่มหรือลบออก ( MT )กิโลกรัม = ความสูงของจุดศูนย์ถ่วงของเพิ่ม / ลบน้ำหนักเหนือกระดูกงู ( M )Δ F = ยาน ) หลังจากการเพิ่ม / ลบน้ำหนัก( + ) เมื่อน้ำหนักเพิ่ม ( + )( - ) เมื่อใช้น้ำหนักเป็นลบ ( - )ตัวอย่างปัญหา30 ตันลังเพิ่ม 10 เมตรเหนือกระดูกงู . Δ O คือ 3 , 500 ตันและ kg0 6 เมตรมีความสูงใหม่ของศูนย์ของยานของแรงโน้มถ่วง ( kg1 )kg1 = ( ( Δ O X KGO ) + / - ( W x กิโลกรัม ) / Δ Fkg1 = ( ( 3 , 500 x 5 ) + ( 30 x 10 ) / 3530kg1 = 6.034 ม.น้ำหนักกะแนวนอนขยับน้ำหนักแนวนอน ไม่ว่าจะอยู่ที่ไหน บน มัน จะเสมอ เพราะเป็นจุดศูนย์กลางของแรงโน้มถ่วงเรือไปในทิศทางเดียวกัน เช่น น้ำหนัก กะหมายเหตุ : น้ำหนักกะก่อให้เกิดศูนย์ของแรงโน้มถ่วงเพื่อย้ายเรือออกจากซีเมนต์เพสต์ , น้ำปูนข้นจะลดความเสถียรของเรือเปลี่ยน cargo4เพื่อคำนวณการเคลื่อนที่ของศูนย์ของแรงโน้มถ่วงเรือของแนวนอน ใช้สมการต่อไปนี้ :gg2 = ( W x D ) F / ΔW = ปริมาณของน้ำหนักตัว ( MT )D = ระยะทางแนวนอนน้ำหนักขยับ ( M )Δ F = เรือแทนที่หลังจากน้ำหนักขยับ ( MT )ตัวอย่างปัญหาหนัก 50 ตันเปลี่ยนไป 10 เมตรไปทางกราบขวา Δ O คือ 32 , 000 MTอะไรคือเปลี่ยนในศูนย์ของแรงโน้มถ่วง ( gg2 )gg2 = ( W x D ) F / Δgg2 = ( 50 x 10 ) 32 , 000gg2 = 0.01562 ม.น้ำหนักเพิ่ม / เอาออกในแนวนอนเมื่อมีการปิดศูนย์ น้ำหนักเพิ่มหรือลบออกไปจากเรือ ศูนย์ของยานของแรงโน้มถ่วงจะย้ายจากซีเมนต์เพสต์ , น้ำปูนข้น เรือจะพัฒนารายการเปลี่ยน cargo5เพื่อคำนวณการเคลื่อนที่ของเรือศูนย์แนวนอน
การแปล กรุณารอสักครู่..
 
ภาษาอื่น ๆ
การสนับสนุนเครื่องมือแปลภาษา: กรีก, กันนาดา, กาลิเชียน, คลิงออน, คอร์สิกา, คาซัค, คาตาลัน, คินยารวันดา, คีร์กิซ, คุชราต, จอร์เจีย, จีน, จีนดั้งเดิม, ชวา, ชิเชวา, ซามัว, ซีบัวโน, ซุนดา, ซูลู, ญี่ปุ่น, ดัตช์, ตรวจหาภาษา, ตุรกี, ทมิฬ, ทาจิก, ทาทาร์, นอร์เวย์, บอสเนีย, บัลแกเรีย, บาสก์, ปัญจาป, ฝรั่งเศส, พาชตู, ฟริเชียน, ฟินแลนด์, ฟิลิปปินส์, ภาษาอินโดนีเซี, มองโกเลีย, มัลทีส, มาซีโดเนีย, มาราฐี, มาลากาซี, มาลายาลัม, มาเลย์, ม้ง, ยิดดิช, ยูเครน, รัสเซีย, ละติน, ลักเซมเบิร์ก, ลัตเวีย, ลาว, ลิทัวเนีย, สวาฮิลี, สวีเดน, สิงหล, สินธี, สเปน, สโลวัก, สโลวีเนีย, อังกฤษ, อัมฮาริก, อาร์เซอร์ไบจัน, อาร์เมเนีย, อาหรับ, อิกโบ, อิตาลี, อุยกูร์, อุสเบกิสถาน, อูรดู, ฮังการี, ฮัวซา, ฮาวาย, ฮินดี, ฮีบรู, เกลิกสกอต, เกาหลี, เขมร, เคิร์ด, เช็ก, เซอร์เบียน, เซโซโท, เดนมาร์ก, เตลูกู, เติร์กเมน, เนปาล, เบงกอล, เบลารุส, เปอร์เซีย, เมารี, เมียนมา (พม่า), เยอรมัน, เวลส์, เวียดนาม, เอสเปอแรนโต, เอสโทเนีย, เฮติครีโอล, แอฟริกา, แอลเบเนีย, โคซา, โครเอเชีย, โชนา, โซมาลี, โปรตุเกส, โปแลนด์, โยรูบา, โรมาเนีย, โอเดีย (โอริยา), ไทย, ไอซ์แลนด์, ไอร์แลนด์, การแปลภาษา.

Copyright ©2025 I Love Translation. All reserved.

E-mail: