Sunflowers are known to respond to Fe deficiency (-Fe) with a typical root tip swelling and the formation of root hairs and transfer cells in the rhizodermis. The possible regulation of this process was examined by a comparative study of root morphology and cytology of intact seedlings (Helianthus annuus L. cv. Giganteus) under -Fe and hormonal treatment in nutrient solution. Longitudinal sections of -Fe roots showed root tip swelling is due to cessation of cell elongation and isodiarnetric volume increase of the cortical cells. Enhanced cell division in the pericycle leads to the formation of lateral root primordia in the swollen zone. Xylem vessel differentiation is markedly accelerated and accompanied by early differentiation of the casparian band in the endodermis. Exogenous application of IAA (10−8-10−7 M) via the nutrient solution to Fe sufficient plants causes symptoms which closely mimick the characteristics of Fe deficiency including root hair development. Moreover, rhizodermal cells produce peripheral protuberances reminiscent of -Fe transfer cells. Ethylene-releasing ethephon (10−4M) also causes subapical swelling and root hair formation. However, wall protuberance development is less pronounced. ABA (10−5 M) leads to similar root thickening and root hair formation but without any comparable transfer cell differentiation. From the striking similarities between -Fe and IAA treatment it is concluded that this hormone (possibly in cooperation with ethylene) is involved in the Fe stress response of sunflower roots. The importance of a continuous polar IAA transport for this process is discussed.