At sufficiently low temperatures, electrons near the Fermi surface become unstable against the formation of Cooper pairs. Cooper showed such binding will occur in the presence of an attractive potential, no matter how weak. In conventional superconductors, an attraction is generally attributed to an electron-lattice interaction. The BCS theory, however, requires only that the potential be attractive, regardless of its origin. In the BCS framework, superconductivity is a macroscopic effect which results from the condensation of Cooper pairs. These have some bosonic properties, while bosons, at sufficiently low temperature, can form a large Bose–Einstein condensate. Superconductivity was simultaneously explained by Nikolay Bogolyubov, by means of the Bogoliubov transformations.
In many superconductors, the attractive interaction between electrons (necessary for pairing) is brought about indirectly by the interaction between the electrons and the vibrating crystal lattice (the phonons). Roughly speaking the picture is the following:
An electron moving through a conductor will attract nearby positive charges in the lattice. This deformation of the lattice causes another electron, with opposite spin, to move into the region of higher positive charge density. The two electrons then become correlated. Because there are a lot of such electron pairs in a superconductor, these pairs overlap very strongly and form a highly collective condensate. In this "condensed" state, the breaking of one pair will change the energy of the entire condensate - not just a single electron, or a single pair. Thus, the energy required to break any single pair is related to the energy required to break all of the pairs (or more than just two electrons). Because the pairing increases this energy barrier, kicks from oscillating atoms in the conductor (which are small at sufficiently low temperatures) are not enough to affect the condensate as a whole, or any individual "member pair" within the condensate. Thus the electrons stay paired together and resist all kicks, and the electron flow as a whole (the current through the superconductor) will not experience resistance. Thus, the collective behavior of the condensate is a crucial ingredient necessary for superconductivity.
In 1957 Bardeen and Cooper assembled these ingredients and constructed such a theory, the BCS theory, with Robert Schrieffer. The theory was first published in April 1957 in the letter, "Microscopic theory of superconductivity".[4] The demonstration that the phase transition is second order, that it reproduces the Meissner effect and the calculations of specific heats and penetration depths appeared in the December 1957 article, "Theory of superconductivity".[5] They received the Nobel Prize in Physics in 1972 for this theory. The 1950 Landau-Ginzburg theory of superconductivity is not cited in either of the BCS papers.
In 1986, high-temperature superconductivity was discovered (i.e. superconductivity at temperatures considerably above the previous limit of about 30 K; up to about 130 K). It is believed that BCS theory alone cannot explain this phenomenon and that other effects are at play.[6] These effects are still not yet fully understood; it is possible that they even control superconductivity at low temperatures for some materials.