In a first step, the ปริมาตร of composition (Vc) — the ปริมาตร occupied by the nanoparticles (HU above
typically 120 or 150 or 200) — is calculated.
In a second step, within the calculated ปริมาตร (Vc), an histogram corresponding to the distribution of HU values above typically 120 or 150 or 200, is established. The histogram represents the occurrences
25 of voxels related to specific HU values above a specific threshold, typically 120 HU or 150 HU or 200
HU. The mean HU value for the distribution of nanoparticles is obtained using the following equation:
Mean HU = E (HU x occurence) occurences
30 A calibration curve is used where the Hounsfield number (HU) is plotted against an increased
concentration of the nanoparticles either in a สารแขวนลอย or in a gel. A typical example of calibration curve is presented for gold nanoparticles with size ranging from 15 nm up to 105 nm (GNPs) in Figure 3.
35 From the calibration curve, a mean concentration of nanoparticles is calculated (Xmean ing/L).
In a third step, the ปริมาตร of nanoparticles (VNP = Vin) within Vc is calculated as follow:
The following equation is then used to calculate the electron density (number of electron per ปริมาตร)
5 of the ปริมาตร of composition:
Where,
10 p = electron density of the ปริมาตร of composition (number of electron per cm3);
p e-eau = electron density of water
P e-material = electron density of the material constituting the nanoparticle
Due to the absence of nanoparticles leakage from the tumor mass following local injection of 15 nanoparticles สารแขวนลอย, the ปริมาตร of composition corresponds to the ปริมาตร of the nanoparticles'
สารแขวนลอย which has been injected into the tumor; and the mean concentration of nanoparticles in the
ปริมาตร of composition corresponds to the concentration of the nanoparticles' สารแขวนลอย which has
been injected into the tumor.
20 CALCULATION OF THE QUANTITY OF ELECTRONS PROVIDED BY THE
NANOPARTICLES TO THE TUMOR ปริมาตร
The quantity of electrons provided by the nanop articles is calculated using the following equation
25 Quantity of electrons = Vivp (cm3) x p e-material
รังสีบำบัด SOURCES
The nanoparticles of the การประดิษฐ์ can be used in many fields, particularly in human or veterinary 30 medicine. Nanoparticles and compositions according to the การประดิษฐ์, as herein described, are
ที่ควรใช้คือ for use in an animal, ที่ควรใช้คือ in a mammal (for example in the context of veterinary
medicine), ที่ควรใช้กว่านั้นคือ in a human being, as a therapeutic agent, in particular in oncology,
ที่ควรใช้คือ when the nanoparticle is exposed to ionizing radiations. Ionizing radiations includes
typically X-Rays, gamma-Rays, UV-Rays, electron beams as well as particle beams of, for example
neutrons, carbon ions and protons.
In a particular embodiment, the การประดิษฐ์นี้ relates to a method of inducing in a เป้าหมาย suffering of a cancer (i) the destruction of more than about 30%, for example more than about 35%, 40%, 44% or 45%, ที่ควรใช้คือ more than about 47%, for example more than about 50%, 55%, 60%,
65% and 68%, ที่ควรใช้กว่านั้นคือ more than about 70% of cancer cells in a tumor ปริมาตร, or 5 (ii) at least 15%, 20%, ที่ควรใช้คือ more than 20% of tumor size reduction, ซึ่งประกอบรวมด้วย:
การให้ to a เป้าหมาย a composition having a ปริมาตร (Vc) occupying between 2 and 50%
of the tumor ปริมาตร (Vt), said composition ซึ่งประกอบรวมด้วย inorganic nanoparticles, each inorganic nanoparticle having a ปริมาตร (Vin) having an electron density at least 5 times the electron density of the corresponding ปริมาตร 1 (Vwl) of water; and
- exposing the tumor of the เป้าหมาย to ionizing radiations.
In a รุรุที่ควรใช้, the ปริมาตร composition (Vc) has an electron density of at least 3% of the
electron density of the corresponding ปริมาตร 2 (Vw2) of water. ที่ควรใช้กว่านั้นคือ, the inorganic
nanoparticles provide at least, ที่ควรใช้คือ more than 3x10' electrons, for example more than about 15 3.2x1022 electrons, ที่ควรใช้คือ more than 7x1022, electrons to the tumor mass.
Under the effect of ionizing radiations, in particular X-Rays, gamma-rays, radioactive isotopes and/or
electron beams, the nanoparticles are activated, or in other terms excited, and produce electrons and/or
high energy photons. Those electrons and/or high energy photons emitted after ionization will be 20 involved in the direct and/or indirect cells damages, possibly via free radicals generation, and
ultimately for cells destruction, resulting in a better outcome for the patient. Surprisingly, inventors
discovered that the high electron density of each nanoparticle together with the quantity of electrons
provided by the nanoparticles to the tumor mass are responsible for a markedly increased efficiency of
the รังสีบำบัด.
The particles can be excited within a large range of total dose of radiations.
ปริมาณs and schedules (planning and delivery of irradiations whichever fraction dose, fraction
delivery schema, total dose alone or in combination with other anticancer agents, etc.) is defined for
any disease/anatomical site/disease stage patient setting/patient age (children, adult, elderly patient), 30 and constitutes the standard of care for any specific situation.
The irradiation can be applied at any time after การให้ of the nanoparticles, on one or more occasions, by using any currently available system of รังสีบำบัด or radiography.
35 As indicated previously, appropriate radiations or sources of excitation are ที่ควรใช้คือ ionizing
radiations and can ที่เป็นผลดีคือ be selected from the group consisting of X-Rays, gamma-Rays,
electron beams, ion beams and radioactive isotopes or radioisotopes emissions. X-Rays is a particularly preferred source of excitation.
Ionizing radiations are typically of about 2 KeV to about 25 000 KeV, in particular of about 2 KeV to 5 about 6000 KeV (i.e. 6 MeV) (LINAC source), or of about 2 KeV to about 1500 KeV (such as a cobalt
60 source).
In general and in a non-restrictive manner, the following X-Rays can be applied in different cases to excite the particles:
10 Superficial X-Rays of 2 to 50 keV : to excite nanoparticles near the surface (penetration of a
few millimeters);
X-Rays of 50 to 150 keV: in diagnostic but also in therapy;
X-Rays (ortho voltage) of 200 to 500 keV which can penetrate a tissue thickness of 6 cm; X-Rays (mega voltage) of 1000 keV to 25,000 keV.
Radioactive isotopes can alternatively be used as an ionizing radiation source (named as curietherapy or brachytherapy). In particular, Iodine 1125 (t 1/2 =60.1 days), Palladium Pd103 (t 1/2 = 17 days), Cesium Cs137, Strontium 89Sr (t V2 = 50,5 days), Samarium 153Sm (t 1/2 = 46.3 hours), and Iridium 11-192, can ที่เป็นผลดีคือ be used.
Charged particles such as proton beams, ions beams such as carbon, in particular high energy ion beams, can also be used as a ionizing radiation source and/or neutron beams.
Electron beams may also be used as a ionizing radiation source with energy ประกอบรวมด้วยd between 4
MeV and 25 MeV.
Specific monochromatic irradiation source could be used for selectively generating X-rays radiation at energy close to or corresponding to the desired X-ray absorption edge of the atoms constituting the metallic material.
Preferentially sources of ionizing radiations may be selected from Linear Accelerator (LINAC), Cobalt 60 and brachytherapy sources.
ASSESSMENT OF OBJECTIVE TUMOR RESPONSE
Tumor size evaluation (Anatomical response criteria)
Assessment of the change in tumor burden is an important feature of the clinical evaluation of cancer therapeutics: both tumor shrinkage (objective response) and disease progression are useful endpoint in clinical trials.
The use of tumor regression (tumor size reduction) as meaningful endpoint for screening new agents 5 for evidence of anti-tumor effect is supported by years of evidence suggesting that, for many solid
tumors, agents which produce tumor shrinkage in a proportion of patients have a reasonable chance
(albeit imperfect) of subsequently demonstrating an improvement in overall survival or quality of life,
both gold standards for measuring clinical benefit.
In 1981, the World Health Organization (WHO) first published tumor response criteria. New criteria, 10 known as RECIST (Response Evaluation Criteria in Solid Tumors), were published in 2000 and 2009.
In the above mentioned tumor response criteria, imaging techniques such as CT, MRI, or other
technologies are used for the evaluation of the tumor size.
Percentage (%) of cancer cell killing evaluation
15 Histological examination is used to detect residual cancer cells typically after preoperative therapy.
Currently, the pathological response evaluation of the primary lesion can be performed using definition employed in clinical trials such as, and not exhaustively, the Japanese pathological response criteria, the Abersen classification, the GEPARDO classification, the NSABP B18 classification.
20 Molecular imaging (Metabolic response criteria)
Among several pursued molecular imaging approaches for treatment monitoring, such as dynamic contrast-enhanced MRI, diffusion-weighted MRI, MR spectroscopy, optical imaging and contrast-
enhanced ultrasound, PET with the glucose analog 18F-FGD ((18)fluorodeoxyglucose positron emission tomography) is clinically the most used.
25 Lesser or no decline in 18F-FGD uptake by the tumor was seen as s
ในขั้นตอนแรก ปริมาตรของส่วนประกอบ (Vc) — ปริมาตรรองรับเก็บกัก (ข้างหูโดยทั่วไป 120 หรือ 150 หรือ 200) ซึ่งคำนวณในขั้นตอนที่สอง ภายในปริมาตรคำนวณได้ (Vc), เป็นสร้างฮิสโตแกรมเป็นที่สอดคล้องกับการกระจายของค่าหูข้างปกติ 120 หรือ 150 หรือ 200 ฮิสโตแกรมแสดงถึงเหตุการณ์25 ของ voxels ที่เกี่ยวข้องกับเฉพาะค่าหูข้างจำกัดเฉพาะ 120 โดยปกติหูหรือหู 150 หรือ 200หู หมายความว่าค่าหูสำหรับกระจายเก็บกักได้รับโดยใช้สมการต่อไปนี้:หมายถึง หู = E (HU x เกิดขึ้น) เกิดขึ้น30 ใช้เทียบเส้นโค้งที่ลงจุดหมาย Hounsfield (HU) กับการเพิ่มขึ้นความเข้มข้นเก็บกัก ในแบบสารแขวนลอย หรือ ในเจ นำเสนอตัวอย่างทั่วไปของเส้นโค้งการปรับเทียบสำหรับเก็บกักทอง มีขนาดตั้งแต่ 15 nm ถึง 105 nm (GNPs) ในรูปที่ 335 จากการเทียบเส้นโค้ง ความเข้มข้นเฉลี่ยของเก็บกักได้คำนวณ (Xmean กำลัง/L)ในสามขั้นตอน ปริมาตรของเก็บกัก (vnp อาจ = Vin) ภายใน Vc จะถูกคำนวณดังต่อไปนี้: จากนั้นใช้สมการต่อไปนี้เพื่อคำนวณความหนาแน่นอิเล็กตรอน (จำนวนอิเล็กตรอนต่อปริมาตร)5 ของปริมาตรขององค์ประกอบ: ที่10 p =ความหนาแน่นอิเล็กตรอนของปริมาตรขององค์ประกอบ (จำนวนอิเล็กตรอนต่อ cm3);p e-eau = electron density of waterP e-material = electron density of the material constituting the nanoparticleDue to the absence of nanoparticles leakage from the tumor mass following local injection of 15 nanoparticles สารแขวนลอย, the ปริมาตร of composition corresponds to the ปริมาตร of the nanoparticles' สารแขวนลอย which has been injected into the tumor; and the mean concentration of nanoparticles in the ปริมาตร of composition corresponds to the concentration of the nanoparticles' สารแขวนลอย which has been injected into the tumor.20 CALCULATION OF THE QUANTITY OF ELECTRONS PROVIDED BY THENANOPARTICLES TO THE TUMOR ปริมาตรThe quantity of electrons provided by the nanop articles is calculated using the following equation25 Quantity of electrons = Vivp (cm3) x p e-materialรังสีบำบัด SOURCESThe nanoparticles of the การประดิษฐ์ can be used in many fields, particularly in human or veterinary 30 medicine. Nanoparticles and compositions according to the การประดิษฐ์, as herein described, are ที่ควรใช้คือ for use in an animal, ที่ควรใช้คือ in a mammal (for example in the context of veterinary medicine), ที่ควรใช้กว่านั้นคือ in a human being, as a therapeutic agent, in particular in oncology, ที่ควรใช้คือ when the nanoparticle is exposed to ionizing radiations. Ionizing radiations includes typically X-Rays, gamma-Rays, UV-Rays, electron beams as well as particle beams of, for example neutrons, carbon ions and protons.In a particular embodiment, the การประดิษฐ์นี้ relates to a method of inducing in a เป้าหมาย suffering of a cancer (i) the destruction of more than about 30%, for example more than about 35%, 40%, 44% or 45%, ที่ควรใช้คือ more than about 47%, for example more than about 50%, 55%, 60%,65% and 68%, ที่ควรใช้กว่านั้นคือ more than about 70% of cancer cells in a tumor ปริมาตร, or 5 (ii) at least 15%, 20%, ที่ควรใช้คือ more than 20% of tumor size reduction, ซึ่งประกอบรวมด้วย: การให้ to a เป้าหมาย a composition having a ปริมาตร (Vc) occupying between 2 and 50%of the tumor ปริมาตร (Vt), said composition ซึ่งประกอบรวมด้วย inorganic nanoparticles, each inorganic nanoparticle having a ปริมาตร (Vin) having an electron density at least 5 times the electron density of the corresponding ปริมาตร 1 (Vwl) of water; and - exposing the tumor of the เป้าหมาย to ionizing radiations.
In a รุรุที่ควรใช้, the ปริมาตร composition (Vc) has an electron density of at least 3% of the
electron density of the corresponding ปริมาตร 2 (Vw2) of water. ที่ควรใช้กว่านั้นคือ, the inorganic
nanoparticles provide at least, ที่ควรใช้คือ more than 3x10' electrons, for example more than about 15 3.2x1022 electrons, ที่ควรใช้คือ more than 7x1022, electrons to the tumor mass.
Under the effect of ionizing radiations, in particular X-Rays, gamma-rays, radioactive isotopes and/or
electron beams, the nanoparticles are activated, or in other terms excited, and produce electrons and/or
high energy photons. Those electrons and/or high energy photons emitted after ionization will be 20 involved in the direct and/or indirect cells damages, possibly via free radicals generation, and
ultimately for cells destruction, resulting in a better outcome for the patient. Surprisingly, inventors
discovered that the high electron density of each nanoparticle together with the quantity of electrons
provided by the nanoparticles to the tumor mass are responsible for a markedly increased efficiency of
the รังสีบำบัด.
The particles can be excited within a large range of total dose of radiations.
ปริมาณs and schedules (planning and delivery of irradiations whichever fraction dose, fraction
delivery schema, total dose alone or in combination with other anticancer agents, etc.) is defined for
any disease/anatomical site/disease stage patient setting/patient age (children, adult, elderly patient), 30 and constitutes the standard of care for any specific situation.
The irradiation can be applied at any time after การให้ of the nanoparticles, on one or more occasions, by using any currently available system of รังสีบำบัด or radiography.
35 As indicated previously, appropriate radiations or sources of excitation are ที่ควรใช้คือ ionizing
radiations and can ที่เป็นผลดีคือ be selected from the group consisting of X-Rays, gamma-Rays,
electron beams, ion beams and radioactive isotopes or radioisotopes emissions. X-Rays is a particularly preferred source of excitation.
Ionizing radiations are typically of about 2 KeV to about 25 000 KeV, in particular of about 2 KeV to 5 about 6000 KeV (i.e. 6 MeV) (LINAC source), or of about 2 KeV to about 1500 KeV (such as a cobalt
60 source).
In general and in a non-restrictive manner, the following X-Rays can be applied in different cases to excite the particles:
10 Superficial X-Rays of 2 to 50 keV : to excite nanoparticles near the surface (penetration of a
few millimeters);
X-Rays of 50 to 150 keV: in diagnostic but also in therapy;
X-Rays (ortho voltage) of 200 to 500 keV which can penetrate a tissue thickness of 6 cm; X-Rays (mega voltage) of 1000 keV to 25,000 keV.
Radioactive isotopes can alternatively be used as an ionizing radiation source (named as curietherapy or brachytherapy). In particular, Iodine 1125 (t 1/2 =60.1 days), Palladium Pd103 (t 1/2 = 17 days), Cesium Cs137, Strontium 89Sr (t V2 = 50,5 days), Samarium 153Sm (t 1/2 = 46.3 hours), and Iridium 11-192, can ที่เป็นผลดีคือ be used.
Charged particles such as proton beams, ions beams such as carbon, in particular high energy ion beams, can also be used as a ionizing radiation source and/or neutron beams.
Electron beams may also be used as a ionizing radiation source with energy ประกอบรวมด้วยd between 4
MeV and 25 MeV.
Specific monochromatic irradiation source could be used for selectively generating X-rays radiation at energy close to or corresponding to the desired X-ray absorption edge of the atoms constituting the metallic material.
Preferentially sources of ionizing radiations may be selected from Linear Accelerator (LINAC), Cobalt 60 and brachytherapy sources.
ASSESSMENT OF OBJECTIVE TUMOR RESPONSE
Tumor size evaluation (Anatomical response criteria)
Assessment of the change in tumor burden is an important feature of the clinical evaluation of cancer therapeutics: both tumor shrinkage (objective response) and disease progression are useful endpoint in clinical trials.
The use of tumor regression (tumor size reduction) as meaningful endpoint for screening new agents 5 for evidence of anti-tumor effect is supported by years of evidence suggesting that, for many solid
tumors, agents which produce tumor shrinkage in a proportion of patients have a reasonable chance
(albeit imperfect) of subsequently demonstrating an improvement in overall survival or quality of life,
both gold standards for measuring clinical benefit.
In 1981, the World Health Organization (WHO) first published tumor response criteria. New criteria, 10 known as RECIST (Response Evaluation Criteria in Solid Tumors), were published in 2000 and 2009.
In the above mentioned tumor response criteria, imaging techniques such as CT, MRI, or other
technologies are used for the evaluation of the tumor size.
Percentage (%) of cancer cell killing evaluation
15 Histological examination is used to detect residual cancer cells typically after preoperative therapy.
Currently, the pathological response evaluation of the primary lesion can be performed using definition employed in clinical trials such as, and not exhaustively, the Japanese pathological response criteria, the Abersen classification, the GEPARDO classification, the NSABP B18 classification.
20 Molecular imaging (Metabolic response criteria)
Among several pursued molecular imaging approaches for treatment monitoring, such as dynamic contrast-enhanced MRI, diffusion-weighted MRI, MR spectroscopy, optical imaging and contrast-
enhanced ultrasound, PET with the glucose analog 18F-FGD ((18)fluorodeoxyglucose positron emission tomography) is clinically the most used.
25 Lesser or no decline in 18F-FGD uptake by the tumor was seen as s
การแปล กรุณารอสักครู่..
